Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có x4-3x3-6x2+3x+1=0
<=> (x4+x3-x2)-(43+4x2-4x)-(x2+x-1) =0
<=> (x2-4x-1)(x2+x-1) =0
=> \(^{\orbr{\begin{cases}x^2-4x-1=0\\x^2+x-1=0\end{cases}\Rightarrow}\orbr{\begin{cases}x=2\pm\sqrt{5}\\x=\pm\frac{\sqrt{5}-1}{2}\end{cases}}}\)
\(8x^4+6x+9=\left(3x^4-6x^2+3\right)+\left(3x^2+6x+3\right)+3+5x^4+3x^2\)
\(=3\left(x^2-1\right)^2+3\left(x+1\right)^2+3+5x^4+3x^2>0\)
Vậy PT vô nghiệm
Ta thấy x=0 không là nghiệm của phương trình
chia cả 2 vế cho x^2 ta được:
PT <=> x^2-3x-6+3/x+1/(x^2)=0
<=> (x^2-2+1/(x^2))-3(x-1/x)-4=0
<=> (x-1/x)^2-3(x-1/x)-4=0
Đặt x-1/x=y
PT <=> y^2-3y-4=0
<=> y=-4 hoặc y=1
Tại y=-4 , ta có x+1/x+4=0
<=> x^2+4x+1=0
<=> x=-2+ √3 hoăc x=-2- √ 3
Tại y=1 ta có x^2-x-1=0
<=> x=(1- √ 5)/2 hoặc x=(1+ √5)/2
2) pt đề bài cho=0
<=> \(\left(x-1\right)^2\left(2x^2-x+2\right)\)=0
<=>\(\orbr{\begin{cases}x-1=0\left(1\right)\\2x^2-x+2=0\left(2\right)\end{cases}}\)
Từ 1 => x=1
từ 2 =>\(2\left(x^2-\frac{1}{2}x+1\right)\)
=\(2\left[\left(x-\frac{1}{4}\right)^2+\frac{15}{16}\right]>0\)với mọi x
Nên pt 2 cô nghiệm
Vậy pt đề cho có nghiệm là 1
a) \(9x^2-1=\left(3x+1\right)\left(4x+1\right)\)
\(\Leftrightarrow\)\(\left(3x-1\right)\left(3x+1\right)-\left(3x+1\right)\left(4x+1\right)=0\)
\(\Leftrightarrow\)\(\left(3x+1\right)\left(3x-1-4x-1\right)=0\)
\(\Leftrightarrow\)\(\left(3x+1\right)\left(-x-2\right)=0\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}3x+1=0\\-x-2=0\end{cases}}\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}x=-\frac{1}{3}\\x=-2\end{cases}}\)
Vậy...
x4 - 3x3 - 6x2 + 3x + 1= 0
<=> (x4 - 4x3 - x2) + (x3 - 4x2 - x) + (-x2 + 4x + 1) = 0
<=> (x2 - 4x - 1)(x2 + x - 1) = 0