K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 8 2018

đây là hóa học 8 à

1 tháng 8 2018

Dễ thấy, nếu x < 0:
VT=√x2+5+3x<√x2+12<√x2+12+5VT=x2+5+3x<x2+12<x2+12+5.
Phương trình vô nghiệm. Vậy x≥0x≥0.

Phương trình ban đầu tương đương:
(√x2+5−3)−(√x2+12−4)+3x−6=0(x2+5−3)−(x2+12−4)+3x−6=0

⇔x2−4√x2+5+3−x2−4√x2+12+4+3(x−2)=0⇔x2−4x2+5+3−x2−4x2+12+4+3(x−2)=0

⇔(x−2)[x+2√x2+5+3−x+2√x2+12+4+3]=0⇔(x−2)[x+2x2+5+3−x+2x2+12+4+3]=0

⇔⎡⎢⎣x=2x+2√x2+5+3−x+2√x2+12+4+3=0(2)⇔[x=2x+2x2+5+3−x+2x2+12+4+3=0(2)

Ta có:
(2)⇔(x+2)[1√x2+5+3−1√x2+12+4]+3=0(2)⇔(x+2)[1x2+5+3−1x2+12+4]+3=0

⇔(x+2).√x2+12−√x2+5+1(√x2+5+3)(√x2+12+4)=0⇔(x+2).x2+12−x2+5+1(x2+5+3)(x2+12+4)=0

Do x > 0 nên VT > 0 = VF. Do đó phương trình (2) vô nghiệm.

Vậy phương trình ban đầu có nghiệm duy nhất x = 2.