Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Nếu bạn thiếu số 2 bên cạnh $\sqrt{2x^2+5x+3}$ thì có thể tham khảo lời giải tại đây:
https://hoc24.vn/cau-hoi/tim-x-sao-cho-sqrt2x3sqrtx13x2sqrt2x25x3-16.235781793134
ĐKXĐ: \(x\ge-1\)
Đặt \(\sqrt{2x+3}+\sqrt{x+1}=t>0\)
\(\Rightarrow3x+2\sqrt{2x^2+5x+3}=t^2-4\)
Pt trở thành:
\(t=t^2-4-2\Leftrightarrow t^2-t-6=0\Rightarrow\left[{}\begin{matrix}t=3\\t=-2\left(l\right)\end{matrix}\right.\)
\(\Rightarrow\sqrt{2x+3}+\sqrt{x+1}=3\)
\(\Leftrightarrow3x+4+2\sqrt{2x^2+5x+3}=9\)
\(\Leftrightarrow2\sqrt{2x^2+5x+3}=5-3x\) (\(x\le\frac{5}{3}\) )
\(\Leftrightarrow4\left(2x^2+5x+3\right)=\left(5-3x\right)^2\)
\(\Leftrightarrow x^2-50x+13=0\Rightarrow x=25-6\sqrt{17}\)
a/ \(\Rightarrow2x^2-3x-11=x^2-1\)
\(\Leftrightarrow x^2-3x-10=0\Rightarrow\left[{}\begin{matrix}x=5\\x=-2\end{matrix}\right.\)
Thay 2 nghiệm vào cả 2 căn thức thấy đều xác định
Vậy nghiệm của pt là ...
b/ \(\left\{{}\begin{matrix}x\ge-1\\2x^2+3x-5=\left(x+1\right)^2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge-1\\x^2+x-6=0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x\ge-1\\\left[{}\begin{matrix}x=2\\x=-3\left(l\right)\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow x=2\)
c/
\(\Leftrightarrow x^2+4x+4=3x^2-5x+14\)
\(\Leftrightarrow2x^2-9x+10=0\)
\(\Rightarrow\left[{}\begin{matrix}x=2\\x=\frac{5}{2}\end{matrix}\right.\)
d/
\(\Leftrightarrow\left\{{}\begin{matrix}-x-9\ge0\\\left(x-1\right)\left(2x-3\right)=\left(-x-9\right)^2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\le-9\\2x^2-5x+3=x^2+18x+81\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\le-9\\x^2-23x-78=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=26\left(ktm\right)\\x=-3\left(ktm\right)\end{matrix}\right.\)
Vậy pt vô nghiệm
a/ ĐKXĐ: \(\left[{}\begin{matrix}x\ge-1\\x\le-5\end{matrix}\right.\)
Bình phương 2 vế:
\(x^2+3x+2+2\sqrt{\left(x^2+3x+2\right)\left(x^2+6x+5\right)}+x^2+6x+5=2x^2+9x+7\)
\(\Leftrightarrow2\sqrt{\left(x^2+3x+2\right)\left(x^2+6x+5\right)}=0\)
\(\Rightarrow\left[{}\begin{matrix}x^2+3x+2=0\\x^2+6x+5=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=-1\\x=-2\left(l\right)\\x=-5\end{matrix}\right.\)
Vậy pt có 2 nghiệm \(x=-1;x=-5\)
b/ ĐKXĐ: \(x\ge-1\)
Đặt \(\sqrt{2x+3}+\sqrt{x+1}=a>0\Rightarrow a^2-6=3x+2\sqrt{2x^2+5x+3}-2\)
Phương trình trở thành:
\(a=a^2-6\Leftrightarrow a^2-a-6=0\Rightarrow\left[{}\begin{matrix}a=-2\left(l\right)\\a=3\end{matrix}\right.\)
\(\Rightarrow\sqrt{2x+3}+\sqrt{x+1}=3\Leftrightarrow3x+4+2\sqrt{2x^2+5x+3}=9\)
\(\Leftrightarrow2\sqrt{2x^2+5x+3}=5-3x\)
\(\Leftrightarrow\left\{{}\begin{matrix}5-3x\ge0\\4\left(2x^2+5x+3\right)=\left(5-3x\right)^2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x\le\dfrac{5}{3}\\x^2-50x+13=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=25+6\sqrt{17}\left(l\right)\\x=25-6\sqrt{17}\end{matrix}\right.\)
Vậy pt có nghiệm duy nhất \(x=25-6\sqrt{17}\)
a) \(\sqrt{\left(x+1\right)\left(x+2\right)}+\sqrt{\left(x+1\right)\left(x+5\right)}=\sqrt{\left(x+1\right)\left(2x+7\right)}\)
\(ĐK\Leftrightarrow\left[{}\begin{matrix}x\le-1\\x\ge-2\end{matrix}\right.\)
\(\Leftrightarrow\sqrt{\left(x+1\right)\left(x+2\right)}+\sqrt{\left(x+1\right)\left(x+5\right)}-\sqrt{\left(x+1\right)\left(2x+7\right)}=0\)
\(\Leftrightarrow\sqrt{\left(x+1\right)}\left(\sqrt{x+2}+\sqrt{x+5}-\sqrt{2x+7}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\\sqrt{x+2}+\sqrt{x+5}=\sqrt{2x+7}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x+2+x+5+2\sqrt{\left(x+2\right)\left(x+5\right)}=2x+7\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\2\sqrt{\left(x+2\right)\left(x+5\right)}=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=-2\\x=-5\end{matrix}\right.\)
vậy \(S=\left\{-1;-2;-5\right\}\)
ĐK: 2x + 3 \(\ge\) 0; x+ 1 \(\ge\) 0 => x \(\ge\) -1
Đặt \(t=\sqrt{2x+3}+\sqrt{x+1}\left(t\ge0\right)\)
=> \(t^2=3x+4+2.\sqrt{\left(2x+3\right)\left(x+1\right)}=3x+4+2\sqrt{2x^2+5x+3}\)
PT đã cho trở thành: t = t 2 - 20 <=> t2 - t - 20 = 0 <=> t = 5 ; t = -4
t = 5 thỏa mãn => \(\sqrt{2x+3}+\sqrt{x+1}=5\) (*)
Nhận xét : x = 3 là nghiệm của phương trình
+) x < 3 => \(\sqrt{2x+3}+\sqrt{x+1}\sqrt{9}+\sqrt{4}=5\)=> x> 3 không là nghiệm của (*)
vậy PT có 1 nghiệm duy nhất x = 3
\(ĐKXĐ:x\ge-1\)
Đặt \(\hept{\begin{cases}\sqrt{2x+3}=a\\\sqrt{x+1}=b\end{cases}\left(a,b\ge0\right)\Rightarrow}a^2+b^2-4=3x\)
Phương trình đã cho trở thành :
\(a+b=a^2+b^2-4+2ab-16\)
\(\Leftrightarrow\left(a+b\right)^2-\left(a+b\right)-20=0\)
\(\Leftrightarrow\left(a+b-5\right)\left(a+b+4\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}a+b=5\\a+b=-4\end{cases}}\) \(\Leftrightarrow a+b=5\)
\(\Rightarrow\sqrt{2x+3}+\sqrt{x+1}=5\)
\(\Leftrightarrow3x+4+2\sqrt{\left(2x+3\right)\left(x+1\right)}=25\)
\(\Leftrightarrow2\sqrt{\left(2x+3\right)\left(x+1\right)}=21-3x\)
\(\Leftrightarrow\hept{\begin{cases}21-3x\ge0\\4.\left(2x+3\right)\left(x+1\right)=\left(21-3x\right)^2\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x\le7\\4.\left(2x^2+5x+3\right)=441-126x+9x^2\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x\le7\\x^2-146x+429=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x\le7\\\left(x-3\right)\left(x-143\right)=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x\le7\\\orbr{\begin{cases}x=3\\x=143\end{cases}}\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x\le7\\\left(x-3\right)\left(x-143\right)=0\end{cases}}\) \(\Leftrightarrow\hept{\begin{cases}x\le7\\\orbr{\begin{cases}x=3\\x=143\end{cases}}\end{cases}}\)\(\Leftrightarrow x=3\) ( Thỏa mãn ĐKXĐ )
Vậy pt có nghiệm duy nhất \(x=3\)
Câu 1 là \(\left(8x-4\right)\sqrt{x}-1\) hay là \(\left(8x-4\right)\sqrt{x-1}\)?
Câu 1:ĐK \(x\ge\frac{1}{2}\)
\(4x^2+\left(8x-4\right)\sqrt{x}-1=3x+2\sqrt{2x^2+5x-3}\)
<=> \(\left(4x^2-3x-1\right)+4\left(2x-1\right)\sqrt{x}-2\sqrt{\left(2x-1\right)\left(x+3\right)}\)
<=> \(\left(x-1\right)\left(4x+1\right)+2\sqrt{2x-1}\left(2\sqrt{x\left(2x-1\right)}-\sqrt{x+3}\right)=0\)
<=> \(\left(x-1\right)\left(4x+1\right)+2\sqrt{2x-1}.\frac{8x^2-4x-x-3}{2\sqrt{x\left(2x-1\right)}+\sqrt{x+3}}=0\)
<=>\(\left(x-1\right)\left(4x+1\right)+2\sqrt{2x-1}.\frac{\left(x-1\right)\left(8x+3\right)}{2\sqrt{x\left(2x-1\right)}+\sqrt{x+3}}=0\)
<=> \(\left(x-1\right)\left(4x+1+2\sqrt{2x-1}.\frac{8x+3}{2\sqrt{x\left(2x-1\right)}+\sqrt{x+3}}\right)=0\)
Với \(x\ge\frac{1}{2}\)thì \(4x+1+2\sqrt{2x-1}.\frac{8x-3}{2\sqrt{x\left(2x-1\right)}+\sqrt{x+3}}>0\)
=> \(x=1\)(TM ĐKXĐ)
Vậy x=1
Hung nguyen, Trần Thanh Phương, Sky SơnTùng, @tth_new, @Nguyễn Việt Lâm, @Akai Haruma, @No choice teen
help me, pleaseee
Cần gấp lắm ạ!
ĐKXĐ:...
\(\sqrt{3x^2-5x-1}-\sqrt{3x^2-7x+9}+\sqrt{x^2-2}-\sqrt{x^2-3x+13}=0\)
\(\Leftrightarrow\frac{2\left(x-5\right)}{\sqrt{3x^2-5x-1}+\sqrt{3x^2-7x+9}}+\frac{3\left(x-5\right)}{\sqrt{x^2-2}+\sqrt{x^2-3x+13}}=0\)
\(\Leftrightarrow\left(x-5\right)\left(\frac{2}{\sqrt{3x^2-5x-1}+\sqrt{3x^2-7x+9}}+\frac{3}{\sqrt{x^2-2}+\sqrt{x^2-3x+13}}\right)=0\)
\(\Leftrightarrow x-5=0\) (ngoặc to phía sau luôn dương)
\(\Rightarrow x=5\)
\(\sqrt{5x-1}+\sqrt[3]{9-x}=2x^2+3x-1\)
Đk:....
\(\Leftrightarrow\sqrt{5x-1}-2+\sqrt[3]{9-x}-2=2x^2+3x-5\)
\(\Leftrightarrow\frac{5x-1-4}{\sqrt{5x-1}+2}+\frac{9-x-8}{\sqrt[3]{9-x}^2+2\sqrt[3]{9-x}+8}=\left(x-1\right)\left(2x+5\right)\)
\(\Leftrightarrow\frac{5\left(x-1\right)}{\sqrt{5x-1}+2}+\frac{-\left(x-1\right)}{\sqrt[3]{9-x}^2+2\sqrt[3]{9-x}+8}-\left(x-1\right)\left(2x+5\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(\frac{5}{\sqrt{5x-1}+2}-\frac{1}{\sqrt[3]{9-x}^2+2\sqrt[3]{9-x}+8}-\left(2x+5\right)\right)=0\)
Dễ thấy: \(\frac{5}{\sqrt{5x-1}+2}-\frac{1}{\sqrt[3]{9-x}^2+2\sqrt[3]{9-x}+8}-\left(2x+5\right)< 0\)
\(\Rightarrow x-1=0\Rightarrow x=1\)