K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 12 2019

Đặt \(\sqrt{4x^2+2x+3}=a;\sqrt{x^2+1}=b\Rightarrow a^2-4b^2=2x-1\)

PT \(\Leftrightarrow a^2-4b^2=a-2b\Leftrightarrow\left(a-2b\right)\left(a+2b-1\right)=0\)

...

13 tháng 12 2019

Nhầm!!!

Đặt \(\sqrt{4x^2+2x+3}=a;\sqrt{x^2+1}=b\Rightarrow a^2-4b^2=2x-1\)

PT \(\Leftrightarrow2\left(a^2-4b\right)=a-2b\)

\(\Leftrightarrow\left(2a+4b-1\right)\left(a-2b\right)=0\)

P/s: Lần này chắc đúng òi nhỉ???

19 tháng 9 2021

1) \(\sqrt{5-2x}=6\left(đk:x\le\dfrac{5}{2}\right)\)

\(\Leftrightarrow5-2x=36\)

\(\Leftrightarrow2x=-31\Leftrightarrow x=-\dfrac{31}{2}\left(tm\right)\)

2) \(\sqrt{2-x}=\sqrt{x+1}\left(đk:2\ge x\ge-1\right)\)

\(\Leftrightarrow2-x=x+1\)

\(\Leftrightarrow2x=1\Leftrightarrow x=\dfrac{1}{2}\left(tm\right)\)

3) \(\Leftrightarrow\sqrt{\left(2x+1\right)^2}=6\)

\(\Leftrightarrow\left|2x+1\right|=6\)

\(\Leftrightarrow\left[{}\begin{matrix}2x+1=6\\2x+1=-6\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5}{2}\\x=-\dfrac{7}{2}\end{matrix}\right.\)

4) \(\sqrt{x^2-10x+25}=x-2\left(đk:x\ge2\right)\)

\(\Leftrightarrow\sqrt{\left(x-5\right)^2}=x-2\)

\(\Leftrightarrow\left|x-5\right|=x-2\)

\(\Leftrightarrow\left[{}\begin{matrix}x-5=x-2\left(x\ge5\right)\\x-5=2-x\left(2\le x< 5\right)\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}5=2\left(VLý\right)\\x=\dfrac{7}{2}\left(tm\right)\end{matrix}\right.\)

19 tháng 9 2021

lamf nốt 4

 

NV
24 tháng 1 2022

Do vế trái dương nên pt chỉ có nghiệm khi \(x\ge\dfrac{3}{4}\), kết hợp điều kiện \(2x^4-3x^2+1\ge0\Rightarrow x\ge1\)

Khi đó:

\(4x-3=\sqrt{2x^4-3x^2+1}+\sqrt{2x^4-x^2}\ge\sqrt{2x^4-3x^2+1+2x^4-x^2}\)

\(\Rightarrow4x-3\ge\sqrt{4x^4-4x^2+1}\)

\(\Rightarrow4x-3\ge\left|2x^2-1\right|=2x^2-1\)

\(\Rightarrow2x^2-4x+2\le0\)

\(\Rightarrow2\left(x-1\right)^2\le0\)

\(\Rightarrow x=1\)

NV
13 tháng 8 2020

ĐKXĐ: \(x\ge-\frac{1}{4}\)

Đặt \(2\sqrt{x+2}+\sqrt{4x+1}=t>0\)

\(\Rightarrow t^2+3=8x+12+4\sqrt{4x^2+9x+2}\)

\(\Rightarrow2x+3+\sqrt{4x^2+9x+2}=\frac{t^2+3}{4}\) (1)

Pt trở thành:

\(\frac{t^2+3}{4}=t\Leftrightarrow t^2-4t+3=0\Rightarrow\left[{}\begin{matrix}t=1\\t=3\end{matrix}\right.\)

Thay vào (1)

\(\Rightarrow\left[{}\begin{matrix}2x+3+\sqrt{4x^2+9x+2}=1\left(2\right)\\2x+3+\sqrt{4x^2+9x+2}=3\left(3\right)\end{matrix}\right.\)

\(\left(1\right)\Leftrightarrow2x+2+\sqrt{4x^2+9x+2}=0\)

Do \(x\ge-\frac{1}{4}\Rightarrow VT\ge2.\left(-\frac{1}{4}\right)+2>0\) nên (1) vô nghiệm

Xét (2): \(\Leftrightarrow\sqrt{4x^2+9x+2}=-2x\) (\(x\le0\))

\(\Leftrightarrow4x^2+9x+2=4x^2\)

\(\Rightarrow x=-\frac{2}{9}\) (thỏa mãn)

2 tháng 6 2021

em                                                                                                                                                                                                            ko

biết

NV
5 tháng 10 2021

ĐKXĐ: \(x\ge\dfrac{1}{3}\)

\(\Leftrightarrow x^2+11x-3+2\sqrt{\left(x^2+2x\right)\left(9x-3\right)}=4x^2+13x+3\)

\(\Leftrightarrow2\sqrt{\left(x^2+2x\right)\left(9x-3\right)}=3x^2+2x+6\)

\(\Leftrightarrow2\sqrt{\left(3x+6\right)\left(3x^2-x\right)}=3x^2+2x+6\)

\(\Leftrightarrow\left(3x^2-x\right)-2\sqrt{\left(3x+6\right)\left(3x^2-x\right)}+3x+6=0\)

\(\Leftrightarrow\left(\sqrt{3x^2-x}-\sqrt{3x+6}\right)^2=0\)

\(\Leftrightarrow3x^2-x=3x+6\)

\(\Leftrightarrow3x^2-4x-6=0\Rightarrow\left[{}\begin{matrix}x=\dfrac{2+\sqrt{22}}{3}\\x=\dfrac{2-\sqrt{22}}{3}\left(loại\right)\end{matrix}\right.\)

14 tháng 12 2020

a, \(\sqrt{2x^2-3}=\sqrt{4x-3}\) (x \(\ge\) \(\sqrt{\dfrac{3}{2}}\))

Vì hai vế ko âm, bp 2 vế ta được:

2x2 - 3 = 4x - 3

\(\Leftrightarrow\) 2x2 = 4x

\(\Leftrightarrow\) x2 = 2x

\(\Leftrightarrow\) x2 - 2x = 0

\(\Leftrightarrow\) x(x - 2) = 0

\(\Leftrightarrow\) \(\left[{}\begin{matrix}x=0\\x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\left(KTM\right)\\x=2\left(TM\right)\end{matrix}\right.\)

Vậy S = {2}

b, \(\sqrt{2x-1}=\sqrt{x-1}\) (x \(\ge\) 1)

Vì hai vế ko âm, bp 2 vế ta được:

2x - 1 = x - 1

\(\Leftrightarrow\) x = 0 (KTM)

Vậy x = \(\varnothing\)

c, \(\sqrt{x^2-x-6}=\sqrt{x-3}\) (x \(\ge\) 3)

Vì hai vế ko âm, bp 2 vế ta được:

x2 - x - 6 = x - 3

\(\Leftrightarrow\) x2 - 2x - 3 = 0

\(\Leftrightarrow\) x2 - 3x + x - 3 = 0

\(\Leftrightarrow\) x(x - 3) + (x - 3) = 0

\(\Leftrightarrow\) (x - 3)(x + 1) = 0

\(\Leftrightarrow\) \(\left[{}\begin{matrix}x-3=0\\x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\left(TM\right)\\x=-1\left(KTM\right)\end{matrix}\right.\)

Vậy S = {3}

d, \(\sqrt{x^2-x}=\sqrt{3x-5}\) (x \(\ge\) \(\dfrac{5}{3}\))

Vì hai vế ko âm, bp 2 vế ta được:

x2 - x = 3x - 5

\(\Leftrightarrow\) x2 - 4x + 5 = 0

\(\Leftrightarrow\) x2 - 4x + 4 + 1 = 0

\(\Leftrightarrow\) (x - 2)2 + 1 = 0

Vì (x - 2)2 \(\ge\) 0 với mọi x \(\ge\) \(\dfrac{5}{3}\) \(\Rightarrow\) (x - 2)2 + 1 > 0 với mọi x \(\ge\) \(\dfrac{5}{3}\)

\(\Rightarrow\) Pt vô nghiệm

Vậy S = \(\varnothing\)

Chúc bn học tốt!

14 tháng 12 2020

Nguyễn Lê Phước Thịnh nhờ anh xíu ạ