Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) ĐKXĐ: \(x\notin\left\{2;-2\right\}\)
Ta có: \(\dfrac{x+1}{x-2}-\dfrac{5}{x+2}=\dfrac{12}{x^2-4}+1\)
\(\Leftrightarrow\dfrac{\left(x+1\right)\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}-\dfrac{5\left(x-2\right)}{\left(x+2\right)\left(x-2\right)}=\dfrac{12}{\left(x-2\right)\left(x+2\right)}+\dfrac{x^2-4}{\left(x-2\right)\left(x+2\right)}\)
Suy ra: \(x^2+3x+2-5x+10=12+x^2-4\)
\(\Leftrightarrow x^2-2x+12-8-x^2=0\)
\(\Leftrightarrow-2x+4=0\)
\(\Leftrightarrow-2x=-4\)
hay x=2(loại)
Vậy: \(S=\varnothing\)
b) Ta có: \(\left|2x+6\right|-x=3\)
\(\Leftrightarrow\left|2x+6\right|=x+3\)
\(\Leftrightarrow\left[{}\begin{matrix}2x+6=x+3\left(x\ge-3\right)\\-2x-6=x+3\left(x< -3\right)\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-x=3-6\\-2x-x=3+6\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-3\left(nhận\right)\\x=-3\left(loại\right)\end{matrix}\right.\)
Vậy: S={-3}
Bài 1:
c) |2x - 1| = x + 2
<=> 2x - 1 = +(x + 2) hoặc -(x + 2)
* 2x - 1 = x + 2
<=> 2x - x = 2 + 1
<=> x = 3
* 2x - 1 = -(x + 2)
<=> 2x - 1 = x - 2
<=> 2x - x = -2 + 1
<=> x = -1
Vậy.....
\(\dfrac{x+4}{x+1}+\dfrac{x}{x-1}=\dfrac{2x^2}{x^2-1}\) ĐKXĐ: \(x\ne1;x\ne-1\)
\(\Leftrightarrow\dfrac{\left(x+4\right)\left(x-1\right)}{\left(x+1\right)\left(x-1\right)}+\dfrac{x\left(x+1\right)}{\left(x+1\right)\left(x-1\right)}=\dfrac{2x^2}{\left(x+1\right)\left(x-1\right)}\)
\(\Rightarrow x^2+3x-4+x^2+1=2x^2\)
\(\Leftrightarrow x^2+x^2-2x^2+3x=4-1\)
\(\Leftrightarrow3x=3\)
\(\Leftrightarrow x=1\)
Phương trình hiển nhiên có vô số nghiệm nếu không còn điều kiện nào khác (ví dụ tìm nghiệm nguyên)
1. \(x^4-2x^3+3x^2-2x+1=0\)
\(\Leftrightarrow\left(x^4-2x^3+x^2\right)+\left(x^2-2x+1\right)+x^2=0\)
\(\Leftrightarrow x^2\left(x-1\right)^2+\left(x-1\right)^2+x^2=0\)
\(\Leftrightarrow\) (x - 1)2 = 0 và x2 = 0
\(\Leftrightarrow\) x - 1 = 0 và x = 0
\(\Leftrightarrow\) x = 1 và x = 0 (vô lí)
Vậy phương trình vô nghiệm.
2. \(\left(x^2-4\right)^2=8x+1\)
\(\Leftrightarrow x^4-8x^2+16=8x+1\)
\(\Leftrightarrow x^4-8x^2-8x+15=0\)
\(\Leftrightarrow x^4-x^3+x^3-x^2-7x^2+7x-15x+15=0\)
\(\Leftrightarrow x^3\left(x-1\right)+x^2\left(x-1\right)-7x\left(x-1\right)-15\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x^3+x^2-7x-15\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x^3-3x^2+4x^2-12x+5x-15\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left[x^2\left(x-3\right)+4x\left(x-3\right)+5\left(x-3\right)\right]=0\)
\(\Leftrightarrow\left(x-1\right)\left(x-3\right)\left(x^2+4x+5\right)=0\)
\(\Leftrightarrow\) x - 1 = 0 hoặc x - 3 = 0 hoặc x2 + 4x + 5 = 0
1) x - 1 = 0 \(\Leftrightarrow\) x = 1
2) x - 3 = 0 \(\Leftrightarrow\) x = 3
3) \(x^2+4x+5=0\left(\text{loại vì }x^2+4x+5=\left(x+2\right)^2+1>0\forall x\right)\)
Vậy tập nghiệm của pt là S = {1;3}.
a/ \(2x-3=5x+2\)
\(\Leftrightarrow5x-2x=-3-2\)
\(\Leftrightarrow3x=-5\Leftrightarrow x=-\dfrac{5}{3}\)
Vậy..
b. \(2x\left(x-1\right)=2x+2\)
\(\Leftrightarrow2x^2-4x-2=0\)
\(\Leftrightarrow x^2-2x-1=0\)
\(\Leftrightarrow\left(x-1+\sqrt{2}\right)\left(x-1-\sqrt{2}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1-\sqrt{2}\\x=1+\sqrt{2}\end{matrix}\right.\)
Vậy...
c/ ĐKXĐ : \(x\ne\pm2\)
\(\dfrac{x+2}{x-2}-\dfrac{x^2}{x^2-4}=\dfrac{6}{\left(x+2\right)}\)
\(\Leftrightarrow\dfrac{\left(x+2\right)^2}{\left(x-2\right)\left(x+2\right)}-\dfrac{x^2}{\left(x-2\right)\left(x+2\right)}=\dfrac{6\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}\)
\(\Leftrightarrow x^2+4x+4-x^2=6x-12\)
\(\Leftrightarrow2x-16=0\)
\(\Leftrightarrow x=8\)
Vậy..
a, \(5\left|2x-1\right|-3=7\Leftrightarrow5\left|2x-1\right|=10\Leftrightarrow\left|2x-1\right|=2\)
TH1 : \(2x-1=2\Leftrightarrow x=\frac{3}{2}\)
TH2 : \(2x-1=-2\Leftrightarrow x=-\frac{1}{2}\)
b, \(\left(2x+3\right)\left(x-2\right)-x^2+4=0\Leftrightarrow\left(2x+3\right)\left(x-2\right)-\left(x-2\right)\left(x+2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(2x+3-x-2\right)=0\Leftrightarrow\left(x-2\right)\left(x+1\right)=0\Leftrightarrow x=-1;x=2\)
c, \(\frac{2x-3}{2}< \frac{1-3x}{-5}\Leftrightarrow\frac{2x-3}{2}+\frac{1-3x}{5}< 0\)
\(\Leftrightarrow\frac{10x-15+2-6x}{10}< 0\Rightarrow4x-13< 0\Leftrightarrow x< \frac{13}{4}\)
cái này dễ đợi tí mình giải cho, gõ đáp số mất khá nhiều thời gian
\(\frac{x}{2x-6}+\frac{x}{2x+2}-\frac{2x}{\left(x+1\right).\left(x-3\right)}=0\)
\(\Leftrightarrow\frac{x}{2.\left(x-3\right)}+\frac{x}{2.\left(x+1\right)}-\frac{2x}{\left(x+1\right).\left(x-3\right)}=0\)
\(\Leftrightarrow\frac{\left(x+1\right).x}{2.\left(x-3\right).\left(x+1\right)}+\frac{x.\left(x-3\right)}{2.\left(x+1\right).\left(x-3\right)}-\frac{4x}{2.\left(x+1\right).\left(x-3\right)}=0\)
tự làm tiếp nha bạn :)))
\(\left(2x-2\right)^2=\left(x+1\right)^2+3.\left(x-2\right)\left(x+5\right)\)
\(\left(2x-2\right)^2-\left(x+1\right)^2=3.\left(x-2\right)\left(x+5\right)\)
\(\left(2x-2-x-1\right)\left(2x-2+x+1\right)=3.\left(x-2\right)\left(x+5\right)\)
\(\left(x-3\right)\left(3x-1\right)=3.\left(x-2\right)\left(x+5\right)\)
\(3x^2-x-9x+3=\left(3x-6\right)\left(x+5\right)\)
\(3x^2-10x+3=3x^2+15x-6x-30\)
\(3x^2-3x^2-10x+6x-15x+3+30=0\)
\(-19x+33=0\)
\(-19x=-33\)
\(x=\frac{33}{19}\)
\(\Leftrightarrow\left(2x-2\right)^2-\left(x+1\right)^2-3.\left(x-2\right).\left(x+5\right)=0\)
\(\Leftrightarrow4x^2-8x+4-\left(x^2+2x+1\right)-\left(3x-6\right).\left(x+5\right)=0\)
\(\Leftrightarrow4x^2-8x+4-x^2-2x-1-\left(3x^2+15x-6x-30\right)=0\)
\(\Leftrightarrow4x^2-8x+4-x^2-2x-1-3x^2-15x+6x+30=0\)
\(\Leftrightarrow-19x+33=0\)
\(\Leftrightarrow-19x=-33\)
\(\Leftrightarrow x=\frac{33}{19}\)
Vậy...............
Bổ sung đề:
(2x - 1)(x² - x + 1) = 0
⇔ 2x - 1 = 0 hoặc x² - x + 1 = 0
*) 2x - 1 = 0
⇔ 2x = 1
⇔ x = 1/2
*) x² - x + 1 = 0
Ta có:
x² - x + 1 = x² + 2.x.1/2 + 1/4 + 3/4
= (x - 1/2)² + 3/4 > 0 với mọi x ∈ R
⇒ x² - x + 1 = 0 là vô lý
Vậy S = {1/2}