Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
$2x^2-7x+6=0$
$\Leftrightarrow (2x^2-4x)-(3x-6)=0$
$\Leftrightarrow 2x(x-2)-3(x-2)=0$
$\Leftrightarrow (x-2)(2x-3)=0$
$\Leftrightarrow x-2=0$ hoặc $2x-3=0$
$\Leftrightarrow x=2$ hoặc $x=\frac{3}{2}$
2x2 - 7x + 6 = 0
\(\Leftrightarrow\) 2x2 - 4x - 3x + 6 = 0
\(\Leftrightarrow\) (2x2 - 4x) - (3x - 6) = 0
\(\Leftrightarrow\) 2x(x - 2) - 3(x - 2) = 0
\(\Leftrightarrow\) (x - 2)(2x - 3) = 0
\(\Leftrightarrow\) \(\left[{}\begin{matrix}x-2=0\\2x-3=0\end{matrix}\right.\) \(\Leftrightarrow\) \(\left[{}\begin{matrix}x=2\\x=\dfrac{3}{2}\end{matrix}\right.\)
S = \(\left\{2,\dfrac{3}{2}\right\}\)
Bài 1)1)\(x^2+5x+6=x^2+3x+2x+6\)=0
=x(x+3)+2(x+3)=(x+2)(x+3)=0
Dễ rồi
2)\(x^2-x-6=0=x^2-3x+2x-6=0\)
=x(x-3)+2(x-3)=0
=(x+2)(x-3)=0
Dễ rồi
3)Phương trình tương đương:\(\left(x^2+1\right)\left(x+2\right)^2=0\)
Vì \(x^2+1>0\)
=>\(\left(x+2\right)^2=0\)
Dễ rồi
4)Phương trình tương đương\(x^2\left(x+1\right)+\left(x+1\right)\)=0
=> \(\left(x^2+1\right)\left(x+1\right)=0Vì\) \(x^2+1>0\)
=>x+1=0
=>..................
5)\(x^2-7x+6=x^2-6x-x+6\) =0
=x(x-6)-(x-6)=0
=(x-1)(x-6)=0
=>.....
6)\(2x^2-3x-5=2x^2+2x-5x-5\)=0
=2x(x+1)-5(x+1)=0
=(2x-5)(x+1)=0
7)\(x^2-3x+4x-12\)=x(x-3)+4(x-3)=(x+4)(x-3)=0
Dễ rồi
Nghỉ đã hôm sau làm mệt
2x2-7x+6=0
=> 2x2-3x-4x+6=0
=>x(2x-3)-2(2x-3)=0
=>(x-2)x(2x-3)=0
=>TH1 x-2=0=>x=2
=>TH2 2x-3=0=>2x=3=>x=3/2
\(x^3-7x+6=0\)
\(\Leftrightarrow x^2\left(x+3\right)-3x\left(x+3\right)+2\left(x+3\right)=0\)
\(\Leftrightarrow\left(x+3\right)\left(x^2-3x+2\right)=0\)
\(\Leftrightarrow\left(x+3\right)\left[x\left(x-2\right)-1\left(x-2\right)\right]=0\)
\(\Leftrightarrow\left(x+3\right)\left(x-2\right)\left(x-1\right)=0\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=2\\x=1\end{matrix}\right.\)
\(6x^4+7x^3-36x^2-7x+6=0\)
\(\Leftrightarrow\left(6x^4-11x^3-3x^2+2x\right)+\left(18x^3-33x^2-9x+6\right)=0\)
\(\Leftrightarrow x\left(6x^3-11x^2-3x+2\right)+3\left(6x^3-11x^2-3x+2\right)=0\)
\(\Leftrightarrow\left(6x^3-11x^2-3x+2\right)\left(x+3\right)=0\)
\(\Leftrightarrow\left[\left(6x^3-14x+4x\right)+\left(3x^2-7x+2\right)\right]\left(x+3\right)=0\)
\(\Leftrightarrow\left[2x\left(3x^2-7x+2\right)+\left(3x^2-7x+2\right)\right]\left(x+3\right)=0\)
\(\Leftrightarrow\left(3x^2-7x+2\right)\left(2x+1\right)\left(x+3\right)=0\)
\(\Leftrightarrow\left(3x^2-6x-x+2\right)\left(2x+1\right)\left(x+3\right)=0\)
\(\Leftrightarrow\left[3x\left(x-2\right)-\left(x-2\right)\right]\left(2x+1\right)\left(x+3\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(3x-1\right)\left(2x+1\right)\left(x+3\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-2=0\\3x-1=0\end{cases}}\)hoặc \(\orbr{\begin{cases}2x+1=0\\x+3=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=2\\x=\frac{1}{3}\end{cases}}\)hoặc\(\orbr{\begin{cases}x=\frac{-1}{2}\\x=-3\end{cases}}\)
Vậy tập hợp nghiệm \(S=\left\{2;-3;\frac{1}{3};\frac{-1}{2}\right\}\)
\(6x^2-7x+2=0\)
Ta có \(\Delta=7^2-4.6.2=1,\sqrt{\Delta}=1\)
\(\Rightarrow\orbr{\begin{cases}x=\frac{7+1}{12}=\frac{2}{3}\\x=\frac{7-1}{12}=\frac{1}{2}\end{cases}}\)
\(x^6-1=0\)
\(\Leftrightarrow\left(x^3+1\right)\left(x^3-1\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(x^2-x+1\right)\left(x-1\right)\left(x^2+x+1\right)=0\)
Dễ thấy \(\hept{\begin{cases}x^2-x+1>0\forall x\\x^2+x+1>0\forall x\end{cases}}\)nên \(\hept{\begin{cases}x+1=0\\x-1=0\end{cases}}\Leftrightarrow x=\pm1\)
\(6x^2-7x+2=0\)
\(\Leftrightarrow6x^2-3x-4x+2=0\)
\(\Leftrightarrow3x\left(2x-1\right)-2\left(2x-1\right)=0\)
\(\Leftrightarrow\left(3x-2\right)\left(2x-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}3x-2=0\\2x-1=0\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}x=\frac{2}{3}\\x=\frac{1}{2}\end{cases}}\)
Vậy tập nghiệm của pt là \(S=\left\{\frac{2}{3};\frac{1}{2}\right\}\)
\(x^6-1=0\)
\(\Leftrightarrow x^6=1\)
\(\Leftrightarrow x=\pm1\)
Vậy tập nghiệm của pt là : \(S=\left\{\pm1\right\}\)
\(\text{Δ}=\left(-7\right)^2-4\cdot3\cdot1=49-12=37\)
Do đó: Phương trình có hai nghiệm phân biệt là:
\(\left\{{}\begin{matrix}x_1=\dfrac{7-\sqrt{37}}{6}\\x_2=\dfrac{7+\sqrt{37}}{6}\end{matrix}\right.\)
3)
\(x^3-7x+6=0\)
\(\Leftrightarrow x^3+3x^2-3x^2-9x+2x+6=0\)
\(\Leftrightarrow\left(x^3+3x^2\right)-\left(3x^2+9x\right)+\left(2x+6\right)=0\)
\(\Leftrightarrow x^2\left(x+3\right)-3x\left(x+3\right)+2\left(x+3\right)=0\)
\(\Leftrightarrow\left(x^2-3x+2\right)\left(x+3\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x-2\right)\left(x+3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x-2=0\\x+3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=2\\x=-3\end{matrix}\right.\)
4) \(\left(2x+1\right)^2=\left(x-1\right)^2\)
\(\Leftrightarrow\left(2x+1\right)^2-\left(x-1\right)^2=0\)
\(\Leftrightarrow\left(2x+1-x+1\right)\left(2x+1+x-1\right)=0\)
\(\Leftrightarrow3x\left(x+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}3x=0\\x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-2\end{matrix}\right.\)
Vậy ................
\(x^3-7x+6=0\)
\(\Leftrightarrow x^3-x-6x+6=0\)
\(\Leftrightarrow(x^3-x)-(6x-6)=0\)
\(\Leftrightarrow x\left(x^2-1\right)-6\left(x-1\right)=0\)
\(\Leftrightarrow x\left(x-1\right)\left(x+1\right)-6\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left[x\left(x+1\right)-6\right]=0\)
\(\Leftrightarrow\left(x-1\right)\left[x^2+x-6\right]=0\)
\(\Leftrightarrow\left(x-1\right)\left[x^2-3x+2x-6\right]=0\)
\(\Leftrightarrow\left(x-1\right)\left[x\left(x-3\right)+2\left(x-3\right)\right]=0\)
\(\Leftrightarrow\left(x-1\right)\left(x-3\right)\left(x+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x-3=0\\x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=3\\x=-2\end{matrix}\right.\)
Vậy phương trình có tập nghiệm \(S=\left\{-2;1;3\right\}\)