K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
1 tháng 5 2023

Lời giải:
$2x^2-7x+6=0$

$\Leftrightarrow (2x^2-4x)-(3x-6)=0$

$\Leftrightarrow 2x(x-2)-3(x-2)=0$

$\Leftrightarrow (x-2)(2x-3)=0$

$\Leftrightarrow x-2=0$ hoặc $2x-3=0$

$\Leftrightarrow x=2$ hoặc $x=\frac{3}{2}$

1 tháng 5 2023

2x2 - 7x + 6 = 0

\(\Leftrightarrow\) 2x2 - 4x - 3x + 6 = 0

\(\Leftrightarrow\) (2x2 - 4x) - (3x - 6) = 0

\(\Leftrightarrow\) 2x(x - 2) - 3(x - 2) = 0

\(\Leftrightarrow\) (x - 2)(2x - 3) = 0

\(\Leftrightarrow\) \(\left[{}\begin{matrix}x-2=0\\2x-3=0\end{matrix}\right.\) \(\Leftrightarrow\) \(\left[{}\begin{matrix}x=2\\x=\dfrac{3}{2}\end{matrix}\right.\) 

S = \(\left\{2,\dfrac{3}{2}\right\}\)

23 tháng 3 2020

a)Ta có \(\left(2x+1\right)\left(x^2+2\right)=0\)<=>

2x+1=0<=>x=\(-\frac{1}{2}\)

hoặc \(x^2+2=0\)<=>\(x^2=-2\)(Vô lí)

Vậy tập nghiệm của pt S=(\(-\frac{1}{2}\))

b)\(\left(x^2+4\right)\left(7x-3\right)=0\)

<=>\(\left[{}\begin{matrix}x^2+4=0\\7x-3=0\end{matrix}\right.\)

<=>\(\left[{}\begin{matrix}x^2=-4\\x=\frac{3}{7}\end{matrix}\right.\)

\(x^2=-4\) vô lí

Vậy ..........

c)\(\left(x^2+x+1\right)\left(6-2x\right)=0\)

<=>\(\left[{}\begin{matrix}x^2+x+1=0\\6-2x=0\end{matrix}\right.\)

\(x^2+x+1>0\)(dễ dàng c/m)

=>6-2x=0=>x=3

Vậy...

d)\(\left(8x-4\right)\left(x^2+2x+2\right)=0\)

<=>8x-4=0,x=\(\frac{1}{2}\)

hoặc \(x^2+2x+2=0\)(vô lí)

Vậy .....

14 tháng 2 2022

2x2-7x+6=0

=> 2x2-3x-4x+6=0

=>x(2x-3)-2(2x-3)=0

=>(x-2)x(2x-3)=0

=>TH1 x-2=0=>x=2

=>TH2 2x-3=0=>2x=3=>x=3/2

Gõ talex dễ nhìn hơn nha bạn!

1 tháng 4 2017

<=> (x - 3) (x - 2) (x + 1) (2 x + 1) = 0

\(x=3;x=2;x=-1;x=-\frac{1}{2}\)

21 tháng 2 2018

3)

\(x^3-7x+6=0\)

\(\Leftrightarrow x^3+3x^2-3x^2-9x+2x+6=0\)

\(\Leftrightarrow\left(x^3+3x^2\right)-\left(3x^2+9x\right)+\left(2x+6\right)=0\)

\(\Leftrightarrow x^2\left(x+3\right)-3x\left(x+3\right)+2\left(x+3\right)=0\)

\(\Leftrightarrow\left(x^2-3x+2\right)\left(x+3\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x-2\right)\left(x+3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x-2=0\\x+3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=2\\x=-3\end{matrix}\right.\)

21 tháng 2 2018

4) \(\left(2x+1\right)^2=\left(x-1\right)^2\)

\(\Leftrightarrow\left(2x+1\right)^2-\left(x-1\right)^2=0\)

\(\Leftrightarrow\left(2x+1-x+1\right)\left(2x+1+x-1\right)=0\)

\(\Leftrightarrow3x\left(x+2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}3x=0\\x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-2\end{matrix}\right.\)

Vậy ................

6 tháng 2 2020

a) 

Đặt x^2 + x - 5 = t.

Khi đó, pt đã cho trở thành :

t ( t + 9 ) = -18

<=> t^2 + 9t + 18 = 0

<=> ( t + 3 )( t + 6 ) = 0

Giải pt trên, ta được t = -3 và t = -6 là các nghiệm của pt.

+) t = -3 => x^2 + x - 5 = -3

           <=> x^2 + x - 2 = 0

          <=> ( x + 2 )( x - 1 ) = 0

Giải pt trên, ta được x = -2 ; x = 1 là các nghiệm của pt.

+) t = -6 => x^2 + x - 5 = -6

            <=> x^2 + x + 1 = 0

           <=> ( x + 1/2 )^2 + 3/4 = 0

=> Pt trên vô nghiệm.

Vậy..........

b)

x^3 - 7x + 6 = 0

<=> ( x^3 + 3x^2 ) - ( 3x^2 + 9x ) + ( 2x + 6 ) = 0

<=> x^2 . ( x + 3 ) - 3x . ( x + 3 ) + 2( x + 3 ) = 0

<=> ( x + 3 ) ( x^2 - 3x + 2 ) = 0

<=> ( x+ 3 )( x - 2 )( x - 1 ) = 0

Giải pt trên, ta được x = -3 ; x= 2 ; x= 1 là các nghiệm của pt.

Vậy..........

c)

( 3x^2 + 10x - 8 )^2 = ( 5x^2 - 2x + 10 )^2

<=> ( 3x^2 + 10x - 8 )^2 - ( 5x^2 - 2x + 10 )^2 = 0

<=> ( 3x^2 + 10x - 8 - 5x^2 + 2x - 10 )( 3x^2 + 10x - 8 + 5x^2 - 2x + 10 ) = 0

<=> ( -2x^2 + 12x - 18 )( 8x^2 + 8x + 2 ) = 0

<=> ( x^2 - 6x + 9 )( 4x^2 + 4x + 1 ) = 0

<=> ( x - 3 )^2 . ( 2x + 1 )^2 = 0.

Giải pt trên, ta được x = 3 và x = -1/2 là các nghiệm của pt.

Vậy..........

13 tháng 2 2023

a)

`x^2 +5x+6=0`

`<=> x^2 + 3x +2x+6=0`

`<=> x(x+3)+2(x+3)=0`

`<=> (x+3)(x+2)=0`

`<=> x+3=0 hoặcx+2=0`

`<=> x=-3 hoặc x=-2`

b)

`x^2 -7x+6=0`

`<=> x^2 -6x-x+6=0`

`<=> x(x-6)-(x-6)=0`

`<=> (x-6)(x-1)=0`

`<=> x-6=0 hoặc x-1=0 `

`<=> x=6 hoặc x=1`

c)

`x^2 +x -12=0`

`<=> x^2 +4x-3x-12=0`

`<=> x(x+4)-3(x+4)=0`

`<=> (x+4)(x-3)=0`

`<=> x+4=0 hoặc x-3=0`

`<=> x=-4 hoặc x=3`

d)

`x^2 -x-6=0`

`<=>x^2 -3x+2x-6=0`

`<=> x(x-3)+2(x-3)=0`

`<=> (x-3)(x+2)=0`

`<=> x-3=0 hoặc x+2=0`

`<=> x=3 hoặc x=-2`

e)

`2x^2 -3x-5=0`

`<=> 2x^2 -5x+2x-5=0`

`<=> x(2x-5)+(2x-5)=0`

`<=> (2x-5)(x+1)=0`

`<=> 2x-5=0 hoặc x+1=0`

`<=> x=5/2 hoặc x=-1`

13 tháng 2 2023

Chăm chỉ wa' ;-;

14 tháng 6 2018

\(x^3-7x+6=0\)

\(\Leftrightarrow x^3-x-6x+6=0\)

\(\Leftrightarrow(x^3-x)-(6x-6)=0\)

\(\Leftrightarrow x\left(x^2-1\right)-6\left(x-1\right)=0\)

\(\Leftrightarrow x\left(x-1\right)\left(x+1\right)-6\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left[x\left(x+1\right)-6\right]=0\)

\(\Leftrightarrow\left(x-1\right)\left[x^2+x-6\right]=0\)

\(\Leftrightarrow\left(x-1\right)\left[x^2-3x+2x-6\right]=0\)

\(\Leftrightarrow\left(x-1\right)\left[x\left(x-3\right)+2\left(x-3\right)\right]=0\)

\(\Leftrightarrow\left(x-1\right)\left(x-3\right)\left(x+2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x-3=0\\x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=3\\x=-2\end{matrix}\right.\)

Vậy phương trình có tập nghiệm \(S=\left\{-2;1;3\right\}\)

23 tháng 1 2020

\(6x^2-7x+2=0\)

Ta có \(\Delta=7^2-4.6.2=1,\sqrt{\Delta}=1\)

\(\Rightarrow\orbr{\begin{cases}x=\frac{7+1}{12}=\frac{2}{3}\\x=\frac{7-1}{12}=\frac{1}{2}\end{cases}}\)

\(x^6-1=0\)

\(\Leftrightarrow\left(x^3+1\right)\left(x^3-1\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(x^2-x+1\right)\left(x-1\right)\left(x^2+x+1\right)=0\)

Dễ thấy \(\hept{\begin{cases}x^2-x+1>0\forall x\\x^2+x+1>0\forall x\end{cases}}\)nên \(\hept{\begin{cases}x+1=0\\x-1=0\end{cases}}\Leftrightarrow x=\pm1\)

23 tháng 1 2020

\(6x^2-7x+2=0\)

\(\Leftrightarrow6x^2-3x-4x+2=0\)

\(\Leftrightarrow3x\left(2x-1\right)-2\left(2x-1\right)=0\)

\(\Leftrightarrow\left(3x-2\right)\left(2x-1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}3x-2=0\\2x-1=0\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}x=\frac{2}{3}\\x=\frac{1}{2}\end{cases}}\)

Vậy tập nghiệm của pt là \(S=\left\{\frac{2}{3};\frac{1}{2}\right\}\)

\(x^6-1=0\)

\(\Leftrightarrow x^6=1\)

\(\Leftrightarrow x=\pm1\)

Vậy tập nghiệm của pt là : \(S=\left\{\pm1\right\}\)