Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Leftrightarrow\left(x-1\right)^2=-3.-27\)
\(\Leftrightarrow\left(x-1\right)^2=81\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=9\\x-1=-9\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=10\\x=-8\end{matrix}\right.\)
1) Nhìn cái pt hết ham, nhưng bấm nghiệm đẹp v~`~
\(\left(\sqrt{2}+2\right)\left(x\sqrt{2}-1\right)=2x\sqrt{2}-\sqrt{2}\)
\(\Leftrightarrow\left(\sqrt{2}+2\right)\left(x\sqrt{2}-1\right)-2x\sqrt{2}+\sqrt{2}=0\)
\(\Leftrightarrow2x-\sqrt{2}+2x\sqrt{2}-2-2x\sqrt{2}+\sqrt{2}=0\)
\(\Leftrightarrow2x-2=0\Leftrightarrow2x=2\Rightarrow x=1\)
b) Đặt x2 + x + 1 = t > 0 (dễ c/m t > 0 rồi ha)
Khi đó, pt tương đương: \(t\left(t+1\right)=12\Leftrightarrow t^2+t-12=0\Leftrightarrow\left[{}\begin{matrix}t=3\\t=-4\left(L\right)\end{matrix}\right.\)
t = 3 suy ra \(x^2+x+1=3\Leftrightarrow x^2+x-2=0\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-2\end{matrix}\right.\)
Vậy...
c) Chị xem lại đề giúp em ạ.
\(a,⇔\frac{x-23}{24}+\frac{x-23}{25}-\frac{x-23}{26}-\frac{x-23}{27}=0\)
\(⇔(x-23)(\frac{1}{24}+\frac{1}{25}-\frac{1}{26}-\frac{1}{27})=0\)
\(⇔x-23=0\) (vì \(\frac{1}{24}+\frac{1}{25}-\frac{1}{26}-\frac{1}{27}>0\))
\(⇔x=23\)
\(b,⇔\frac{x+100}{98}+\frac{x+100}{97}+\frac{x+100}{96}+\frac{x+100}{95}=0\)
\(⇔(x+100)(\frac{1}{98}+\frac{1}{97}+\frac{1}{96}+\frac{1}{95})=0\)
\(⇔x+100=0\) (vì \(\frac{1}{98}+\frac{1}{97}+\frac{1}{96}+\frac{1}{95}>0\))
\(⇔x=-100\)
\(c,⇔(\frac{x+1}{2012}+1)+(\frac{x+2}{2011}+1)=(\frac{x+3}{2010}+1)+(\frac{x+4}{2009}+1)\)
\(⇔\frac{x+2013}{2012}+\frac{x+2013}{2011}-\frac{x+2013}{2010}-\frac{x+2013}{2009}=0\)
\(⇔(x+2013)(\frac{1}{2012}+\frac{1}{2011}-\frac{1}{2010}-\frac{1}{2009})=0\)
\(⇔x+2013=0\) (vì \(\frac{1}{2012}+\frac{1}{2011}-\frac{1}{2010}-\frac{1}{2009}<0\))
\(⇔x=-2013\)
\(\frac{201-x}{99}+\frac{203}{97}=\frac{205}{95}+3\)
\(\frac{x-45}{55}+\frac{x-47}{53}=\frac{x-55}{45}+\frac{x-53}{47}\)
\(\frac{2-x}{2010}-1=\frac{1-x}{2011}-\frac{x}{2012}\)
Giúp mk với ạ
\(\frac{1}{x^2-2x+2}-1+\frac{2}{x^2-2x+3}-1+2-\frac{6}{x^2-2x+4}=0\)
\(\Leftrightarrow\frac{-x^2+2x-1}{x^2-2x+2}+\frac{-x^2+2x-1}{x^2-2x+3}+\frac{2\left(x^2-2x+1\right)}{x^2-2x+4}=0\)
\(\Leftrightarrow\left(x^2-2x+1\right)\left(\frac{2}{x^2-2x+4}-\frac{1}{x^2-2x+2}-\frac{1}{x^2-2x+3}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2-2x+1=0\Rightarrow x=1\\\frac{2}{x^2-2x+4}-\frac{1}{x^2-2x+2}-\frac{1}{x^2-2x+3}=0\left(1\right)\end{matrix}\right.\)
Xét (1), đặt \(a=x^2-2x+3\) pt trở thành:
\(\frac{2}{a+1}-\frac{1}{a-1}-\frac{1}{a}=0\Leftrightarrow\frac{2\left(a-1\right)-\left(a+1\right)}{\left(a^2-1\right)}-\frac{1}{a}=0\)
\(\Leftrightarrow\frac{a-3}{a^2-1}=\frac{1}{a}\Leftrightarrow a^2-3a=a^2-1\Leftrightarrow3a=1\Rightarrow a=\frac{1}{3}\)
\(\Rightarrow x^2-2x+3=\frac{1}{3}\Leftrightarrow x^2-2x+1+\frac{5}{3}=0\)
\(\Leftrightarrow\left(x-1\right)^2+\frac{5}{3}=0\) (vô nghiệm)
Vậy \(x=1\)
\(\left(x-1\right)^2+\frac{5}{3}=0\) (ko thỏa đk )
ms đúng. chứ vẫn có no mà!!
\(\frac{x+m}{x-1}\)\(=\)\(\frac{x+3}{x-2}\)
\(Mtc:\left(x-1\right)\left(x-2\right)\)
\(\frac{\left(x+m\right)\left(x-2\right)}{\left(x-1\right)\left(x-2\right)}\)\(=\frac{\left(x+3\right)\left(x-1\right)}{\left(x-1\right)\left(x-2\right)}\)
\(\frac{x2-2x+xm-2m}{\left(x-1\right)\left(x-2\right)}=\frac{x2-x+3x-3}{\left(x-1\right)\left(x-2\right)}\)-
k làm theo cách quy đồng nhé!!!
Bài này chả cần thiết phải quy đồng nhé bn , bn có thể lm thế này
\(-\frac{3}{x-1}=\frac{x-1}{-27}\)
\(\left(x-1\right)^2=81\)
\(\Rightarrow\orbr{\begin{cases}x-1=9\\x-1=-9\end{cases}\Rightarrow\orbr{\begin{cases}x=10\\x=-8\end{cases}}}\)