K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
17 tháng 4 2019

a/

\(9x^2+25y^2+1+30xy-6x-10y+4y^2-20y+25=0\)

\(\Leftrightarrow\left(3x+5y-1\right)^2+\left(2y-5\right)^2=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}3x+5y-1=0\\2y-5=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=-\frac{23}{6}\\y=\frac{5}{2}\end{matrix}\right.\)

b/

\(4x^2+4y^2+8xy+x^2-2x+1+y^2+2y+1=0\)

\(\Leftrightarrow4\left(x+y\right)^2+\left(x-1\right)^2+\left(y+1\right)^2=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}x+y=0\\x-1=0\\y+1=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=1\\y=-1\end{matrix}\right.\)

c/

\(y^2-2y+1+2=\frac{6}{x^2+2x+1+3}\)

\(\Leftrightarrow\left(y-1\right)^2+2=\frac{6}{\left(x+1\right)^2+3}\)

Ta có \(VT=\left(y-1\right)^2+2\ge2\)

\(\left(x+1\right)^2+3\ge3\Rightarrow VP=\frac{6}{\left(x+1\right)^2+3}\le\frac{6}{3}=2\)

\(\Rightarrow VT\ge VP\)

Dấu "=" xảy ra khi và chỉ khi: \(\left\{{}\begin{matrix}y-1=0\\x+1=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=-1\\y=1\end{matrix}\right.\)

d/

\(\frac{-9x^2+18x-9-8}{x^2-2x+1+2}=y^2+4y+4-4\)

\(\Leftrightarrow\frac{-9\left(x-1\right)^2-8}{\left(x-1\right)^2+2}=\left(y+2\right)^2-4\)

\(\Leftrightarrow\frac{-9\left(x-1\right)^2-18+10}{\left(x-1\right)^2+2}=\left(y+2\right)^2-4\)

\(\Leftrightarrow-9+\frac{10}{\left(x-1\right)^2+2}=\left(y+2\right)^2-4\)

\(\Leftrightarrow\frac{10}{\left(x-1\right)^2+2}=\left(y+2\right)^2+5\)

Ta có \(\left(x-1\right)^2+2\ge2\Rightarrow\frac{10}{\left(x-1\right)^2+2}\le\frac{10}{2}=5\Rightarrow VT\le5\)

\(\left(y+2\right)^2+5\ge5\Rightarrow VP\ge5\)

\(\Rightarrow VT\le VP\)

Dấu "=" xảy ra khi và chỉ khi: \(\left\{{}\begin{matrix}x-1=0\\y+2=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=1\\y=-2\end{matrix}\right.\)

22 tháng 7 2023

a) \(x+2y+\left(x-y\right)\)

\(=x+2y+x-y\)

\(=2x+y\)

b) \(2x+y-\left(3x-5y\right)\)

\(=2x+y-3x+5y\)

\(=-x+6y\)

c) \(3x^2-4y^2+6xy+7+\left(-x^2+y^2-8xy+9x+1\right)\)

\(=3x^2-4y^2+6xy+7-x^2+y^2-8xy+9x+1\)

\(=2x^2-3y^2-2xy+9x+8\)

d) \(4x^2y-2xy^2+8-\left(3x^2y+9xy^2-12xy+6\right)\)

\(=4x^2y-2xy^2+8-3x^2y-9xy^2+12xy-6\)

\(=x^2y-11xy^2+2+12xy\)

15 tháng 4 2019

pặc pặc....pặc pặc...........pặc pặc......

._.

1 tháng 12 2019

a) \(=\frac{2\left(x+y\right)+5\left(x+y\right)}{2\left(x+y\right)-5\left(x+y\right)}\)

\(=\frac{7\left(x+y\right)}{-3\left(x+y\right)}=\frac{-7}{3}\)

b)\(=\frac{3x\left(x+y\right)}{y}\)

c) \(\frac{5\left(x-y\right)+3\left(x-y\right)}{10\left(x-y\right)}\)

\(=\frac{8\left(x-y\right)}{10\left(x-y\right)}=\frac{4}{5}\)

1 tháng 12 2019

a) \(\frac{2x+2y+5x+5y}{2x+2y-5x-5y}=\frac{7x+7y}{-3x-3y}=\frac{7\left(x+y\right)}{-3\left(x+y\right)}=-\frac{7}{3}.\)

b) \(\frac{15x\left(x+y\right)^3}{5y\left(x+y\right)^2}=\frac{3x\left(x+y\right)}{y}=\frac{3x^2+3xy}{y}\)

c) \(\frac{5\left(x-y\right)-3\left(y-x\right)}{10\left(x-y\right)}=\frac{5\left(x-y\right)+3\left(x-y\right)}{10\left(x-y\right)}=\frac{8\left(x-y\right)}{10\left(x-y\right)}=\frac{4}{5}\)

d) \(\frac{3\left(x-y\right)\left(x-z\right)^2}{6\left(x-y\right)\left(x-z\right)}=\frac{x-z}{2}\)

h) \(\frac{3x\left(1-x\right)}{2\left(x-1\right)}=-\frac{3x\left(x-1\right)}{2\left(x-1\right)}=\frac{-3x}{2}\)

j) \(\frac{6x^2y^2}{8xy^5}=\frac{3x}{4y^3}\)

Câu b) bạn xem lại nhé.

Học tốt ^3^

7 tháng 11 2017

1)

a) \(\dfrac{5x}{10}=\dfrac{x}{2}\)

b) \(\dfrac{4xy}{2y}=2x\left(y\ne0\right)\)

c) \(\dfrac{21x^2y^3}{6xy}=\dfrac{7xy^2}{2}\left(xy\ne0\right)\)

d) \(\dfrac{2x+2y}{4}=\dfrac{2\left(x+y\right)}{4}=\dfrac{x+y}{2}\)

e) \(\dfrac{5x-5y}{3x-3y}=\dfrac{5\left(x-y\right)}{3\left(x-y\right)}=\dfrac{5}{3}\left(x\ne y\right)\)

f) \(\dfrac{-15x\left(x-y\right)}{3\left(y-x\right)}=-5x\dfrac{x-y}{y-x}=-5x\dfrac{x-y}{-\left(x-y\right)}\)

\(=-5x.\left(-1\right)=5x\left(x\ne y\right)\)

2)

a) Nhớ ghi ĐK vào nhá, lười quá :V\(\dfrac{x^2-16}{4x-x^2}=-\dfrac{\left(x-4\right)\left(x+4\right)}{x^2-4x}=\dfrac{\left(x-4\right)\left(x+4\right)}{x\left(x-4\right)}=\dfrac{x+4}{x}\)

b) \(\dfrac{x^2+4x+3}{2x+6}=\dfrac{x^2+3x+x+3}{2\left(x+3\right)}=\dfrac{x\left(x+3\right)+\left(x+3\right)}{2\left(x+3\right)}\)

\(=\dfrac{\left(x+3\right)\left(x+1\right)}{2\left(x+3\right)}=\dfrac{x+1}{2}\)

c) \(\dfrac{15x\left(x+3\right)^3}{5y\left(x+y\right)^2}=\dfrac{3x\left(x+3\right)^3}{y\left(x+y\right)^2}\) ( câu này có gì đó sai sai )

d) \(\dfrac{5\left(x-y\right)-3\left(y-x\right)}{10\left(x-y\right)}=\dfrac{5\left(x-y\right)+3\left(x-y\right)}{10\left(x-y\right)}\)

\(=\dfrac{8\left(x-y\right)}{10\left(x-y\right)}=\dfrac{8}{10}=\dfrac{4}{5}\)

e) \(\dfrac{2x+2y+5x+5y}{2x+2y-5x-5y}=\dfrac{2\left(x+y\right)+5\left(x+y\right)}{2\left(x+y\right)-5\left(x+y\right)}\)

\(=\dfrac{7\left(x+y\right)}{-3\left(x+y\right)}=-\dfrac{7}{3}\)

a: \(\Leftrightarrow4x^2+8xy+4y^2+x^2+2x+1+y^2-2y+1=0\)

=>4(x+y)^2+(x+1)^2+(y-1)^2=0

=>x=-1 và y=1

b: =>\(\left(x^2-7x+10\right)\left(x^2-7x+12\right)+1=0\)

=>\(\left(x^2-7x\right)^2+22\left(x^2-7x\right)+121=0\)

=>\(\left(x^2-7x+11\right)^2=0\)

hay \(x\in\left\{\dfrac{7+\sqrt{5}}{2};\dfrac{7-\sqrt{5}}{2}\right\}\)

HQ
Hà Quang Minh
Giáo viên
12 tháng 1

\(25{x^2} + 20xy + 4{y^2} = {\left( {5x} \right)^2} + 2.5x.2y + {\left( {2y} \right)^2} = {\left( {5x + 2y} \right)^2}\)

Chọn D.

18 tháng 12 2018

ko ghi đề bài nha làm luôn

a) \(\frac{\left(2x+2y\right)+\left(5x+5y\right)}{\left(2x+2y\right)-\left(5x+5y\right)}=\frac{2\left(x+y\right)+5\left(x+y\right)}{2\left(x+y\right)-5\left(x+y\right)}=\frac{\left(2+5\right)\left(x+y\right)}{\left(2-5\right)\left(x+y\right)}=\frac{-7}{3}\)

b)\(\frac{4x\left(x-y\right)}{5x^2\left(x-y\right)}=\frac{4x}{5x^2}=\frac{4}{5x}\)

18 tháng 12 2018

a)ĐK: \(x\ne-y;x,y\ne0\)

\(\frac{2x+2y+5x+5y}{2x+2y-5x-5y}=\frac{2\left(x+y\right)+5\left(x+y\right)}{2\left(x+y\right)-5\left(x+y\right)}\)

\(=\frac{\left(x+y\right)\left(2+5\right)}{\left(x+y\right)\left(2-5\right)}=-\frac{7}{3}\)