K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 11 2021

ko bít

19 tháng 11 2021

\(\sqrt{x}+\sqrt{3x-2}=x^2+1\)đk : x>= 1 

\(\Leftrightarrow\sqrt{x}-1+\sqrt{3x-2}-1+1-x^2=0\)

\(\Leftrightarrow\frac{x-1}{\sqrt{x}+1}+\frac{3x-3}{\sqrt{3x-2}+1}+\left(1-x\right)\left(1+x\right)=0\)

\(\Leftrightarrow\frac{x-1}{\sqrt{x}+1}+\frac{3\left(x-1\right)}{\sqrt{3x-2}+1}-\left(x-1\right)\left(x+1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(\frac{1}{\sqrt{x}+1}+\frac{3}{\sqrt{3x-2}+1}-x-1\right)=0\Leftrightarrow x=1\)

13 tháng 2 2022

TL:

Chỗ tôi được phép sử dụng luôn ko cần chứng minh

HT

13 tháng 2 2022

????

cho 1 vé báo cáo free nhé

13 tháng 3 2019

\(\hept{\begin{cases}xy+3x-y=15\\x+3y=4\end{cases}}\)

\(\hept{\begin{cases}\left(4-3y\right)y+3\left(4-3y\right)-y=15\\x=4-3y\end{cases}}\)

\(\hept{\begin{cases}4y-3y^2+12-9y-y=15\\x=4-3y\end{cases}}\)

\(\hept{\begin{cases}-6y-3y^2-3=0\\x=4-3y\end{cases}}\)

giải pt là ra thôi bn

4 tháng 2 2022

b. delta = \(\left(2n-1\right)^2-4.1.n\left(n-1\right)=4n^2-4n+1-4n^2+4n=1>0\)

pt luôn có 2 nghiệm phân biệt

c.\(\left\{{}\begin{matrix}x_1=\dfrac{2n-1-1}{2}=n-1\\x_2=\dfrac{2n-1+1}{2}=n\end{matrix}\right.\)

\(x_1^2-2x_2+3=\left(n-1\right)^2-2n+3=n^2-4n+4=\left(n-2\right)^2\)

(số bình phương luôn lớn hơn bằng 0) với mọi n

4 tháng 2 2022

2, Ta có : \(\Delta=\left(2n-1\right)^2-4n\left(n-1\right)=4n^2-4n+1-4n^2+4n=1>0\)

Vậy pt luôn có 2 nghiệm pb 

3, Theo Vi et \(\left\{{}\begin{matrix}x_1+x_2=2n-1\\x_1x_2=n\left(n-1\right)\end{matrix}\right.\)

Vì x1 là nghiệm của pt trên nên ta được 

\(x_1^2=\left(2n-1\right)x_1-n\left(n-1\right)\)

Thay vào ta được 

\(2nx_1-x_1-n^2+n-2x_2+3\)

bạn kiểm tra lại đề nhé 

4 tháng 11 2021

fffffffffffffff

5 tháng 8 2021

\(x^2+6x-3=4x\sqrt{2x-1}\left(1\right)\)      ĐK: \(x\ge\frac{1}{2}\)

Đặt \(\sqrt{2x-1}=a\ge0\)

\(\Rightarrow6x-3=3a^2\)

=> (1) <=> x^2 +3a^2 = 4ax

<=> x^2 -4ax +3a^2 =0

<=> x^2 -ax - 3ax +  3a^2 =0

<=> x(x-a) -3a(x-a) =0

<=> (x-a) ( x-3a ) =0

\(\Leftrightarrow\orbr{\begin{cases}x=a\\x=3a\end{cases}}\)

TH1: x=a

\(\Rightarrow x=\sqrt{2x-1}\)\(\left(x\ge0\right)\)

\(\Leftrightarrow x^2=2x-1\)

\(\Leftrightarrow\left(x-1\right)^2=0\)

<=> x=1 (tm)

TH2: x= 3a

\(\Rightarrow x=3\sqrt{2x-1}\left(x\ge0\right)\)

\(\Leftrightarrow x^2=18x-9\)

\(\Leftrightarrow x^2-18x+9=0\)

\(\Delta=288\)

=> pt có 2 nghiệm pb \(\orbr{\begin{cases}x=\frac{18+12\sqrt{2}}{2}=9+6\sqrt{2}\left(tm\right)\\x=\frac{18-12\sqrt{2}}{2}=9-6\sqrt{2}\left(tm\right)\end{cases}}\)

Vậy ...

11 tháng 1 2019

\(\left\{{}\begin{matrix}x_1+x_2+...+x_{2000}=a\left(1\right)\\x_1^2+x_2^2+...+x_{2000}^2=a^2\left(2\right)\\x_1^{2000}+x_2^{2000}+...+x_{2000}^{2000}=a^{2000}\left(3\right)\end{matrix}\right.\)

Từ (2)(3)\(\Rightarrow2\left(x_1x_2+x_2x_3+...+x_{2000}x_1\right)=0\)

\(\Rightarrow x_1=x_2=...=x_{2000}=0\)

Vậy hpt có nghiệm là x=0.

Đúng không ạ?

=>\(\dfrac{-1}{x-1}+\dfrac{1}{x-2}-\dfrac{1}{x-2}+\dfrac{1}{x-3}-\dfrac{1}{x-3}+\dfrac{1}{x-4}=2\)

=>\(\dfrac{1}{x-4}-\dfrac{1}{x-1}=2\)

=>\(\dfrac{x-1-x+4}{x^2-5x+4}=2\)

=>2x^2-10x+8=3

=>2x^2-10x+5=0

=>\(x=\dfrac{5\pm\sqrt{15}}{2}\)

1) ĐKXĐ: \(x\ge5\)

2) ĐKXĐ: \(\left[{}\begin{matrix}x< -2\\x>2\end{matrix}\right.\)

5) ĐKXĐ: \(\left[{}\begin{matrix}x\le2\\x\ge3\end{matrix}\right.\)

27 tháng 6 2021

cứ thủ công đi bro =))