Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ghi sai đề đúng ko bạn? Bài này đúng hình như là chứng minh nó có nghiệm hay vô nghiệm chứ???
ĐK:\(\hept{\begin{cases}x\ge\frac{2}{3}\\y\ge\frac{11}{3}\end{cases}}\)
Giải (1)
\(\left(1\right)\Leftrightarrow\left(x-y+3\right)\left(x-1\right)=0.\)
\(\Leftrightarrow\orbr{\begin{cases}x+3=y\\x=1\end{cases}}\)
Xét x=1
\(\left(2\right)\Leftrightarrow5\left(\sqrt{3y-11}+\sqrt{y}\right)=15\)
\(\Leftrightarrow\sqrt{3y-11}+\sqrt{y}=3\)
\(\Leftrightarrow\left(\sqrt{3y-11}-1\right)+\left(\sqrt{y}-2\right)=0\)
\(\Leftrightarrow\frac{3\left(y-4\right)}{\sqrt{3y-11}+1}+\frac{y-4}{\sqrt{y}+2}=0\)
\(\Leftrightarrow\left(y-4\right)\left(\frac{3}{\sqrt{3y-11}+1}+\frac{1}{\sqrt{y}+2}\right)=0\)
Vì \(y\ge\frac{11}{3}\)nên \(\left(\frac{3}{\sqrt{3y-11}+1}+\frac{1}{\sqrt{y}+2}\right)>0\)
\(\Rightarrow y-4=0\Rightarrow y=4\left(tm\right)\)
Xét x+3=y
\(\left(2\right)\Leftrightarrow4x^2-24x+35=5\left(\sqrt{3x-2}+\sqrt{x+3}\right)\)
Áp dụng bđt AM-GM ta có
\(VP\le5\left(\frac{3x-2+1+x+3+1}{2}\right)=\frac{5\left(4x+3\right)}{2}\)
\(\Rightarrow2\left(4x^2-24x+35\right)\le20x+15\)
\(\Leftrightarrow2\left(4x^2-34x+\frac{55}{2}\right)\le0\)
\(\Leftrightarrow\left(2x-\frac{17}{2}\right)^2-\frac{179}{4}\le0\)(3)
mà \(x\ge\frac{2}{3}\Rightarrow\left(2x-\frac{17}{2}\right)^2-\frac{179}{4}\ge\frac{1849}{36}-\frac{179}{4}>0\)(mâu thuẫn với (3))
=> TH này không xảy ra
Vậy (x,y)=(1,4)
ღ๖ۣۜLinh's ๖ۣۜLinh'sღ]
Mới xem qua thì thấy dòng: thứ 3 từ dưới lên không đúng.
Nếu em thử lấy \(x=\frac{17}{4}>\frac{2}{3}\)
Vẫn thỏa mãn (3)
d)Điều kiện xác định x khác 1 và x khác -2 Đặt \(a=\frac{x-1}{x+2}\);\(b=\frac{x-3}{x-1}\)
Ta có \(a.b=\frac{x-1}{x+2}.\frac{x-3}{x-1}=\frac{x-3}{x+2}\)
Do đó phương trình viết thành \(a^2+a.b-2b^2=0\)
\(\Leftrightarrow a^2-b^2+a.b-b^2=0\)
\(\Leftrightarrow\left(a-b\right)\left(a+b\right)+b\left(a-b\right)=0\)
\(\Leftrightarrow\left(a-b\right)\left(a+2b\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}a=b\\a=-2b\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}\frac{x-1}{x+2}=\frac{x-3}{x-1}\\\frac{x-1}{x+2}=\frac{-2.\left(x-2\right)}{x-1}\end{cases}\Leftrightarrow\orbr{\begin{cases}\left(x-1\right)^2=\left(x-3\right).\left(x+2\right)\\\left(x-1\right)^2=-2.\left(x^2-4\right)\end{cases}}}\)
Đến đây bạn có thể giải ra tìm x đc
\(\Delta'=\left(-2\right)^2-3.\left(-8\right)=4+24=28>0.\)
\(\Rightarrow\) Pt có 2 nghiệm phân biệt \(x_1;x_2.\)
\(\Rightarrow\left\{{}\begin{matrix}x_1=\dfrac{2+2\sqrt{7}}{3}.\\x_2=\dfrac{2-2\sqrt{7}}{3}.\end{matrix}\right.\)