K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 11 2018

ĐKXĐ : x\(\ge0\)

ADBĐT BCS ta được

\(\left(\frac{x^2}{3}+4\right)\left(3+1\right)\ge\left(x+2\right)^2\)

\(\Rightarrow4\sqrt{\frac{x^2}{3}+4}\ge2x+4\)(do x\(\ge0\))    (1)

Do x\(\ge0\)nên ADBĐT Cauchy ta được:

\(\sqrt{6x}\le\frac{x+6}{2}\)\(\Rightarrow1+\frac{3x}{2}+\sqrt{6x}\le1+\frac{3x}{2}+\frac{x+6}{2}=1+\frac{4x+6}{2}=2x+4\)(2)

Từ (1) và (2) \(\Rightarrow4\sqrt{\frac{x^2}{3}+4}\ge1+\frac{3x}{2}+\sqrt{6x}\)

Dấu = xảy ra \(\Leftrightarrow x=6\)(thỏa mãn ĐKXĐ)

6 tháng 11 2018

3) ĐKXĐ \(-1\le x\le1\)

Khi đó phương trình đã cho \(\Leftrightarrow4\left(\sqrt{1+x}+\sqrt{1-x}\right)=8-x^2\)

\(\Leftrightarrow\hept{\begin{cases}16\left(2+2\sqrt{1-x^2}\right)=\left(7+1-x^2\right)\left(2\right)\\8-x^2\ge0\end{cases}}\)

Đặt \(\sqrt{1-x^2}=a\ge0\)

Khi đó phương trình (2) trở thành: 

\(\hept{\begin{cases}16\left(2+2a\right)=\left(7+a^2\right)\\x^2\le8\end{cases}}\)

\(\Leftrightarrow a^4+14a^2+49=32+32a\)

\(\Leftrightarrow a^4+14a^2-32a+17=0\)

\(\Leftrightarrow a^4-2a^2+1+16a^2-32a+16=0\)

\(\Leftrightarrow\left(a^2-1\right)^2+16\left(a-1\right)^2=0\)

\(\Leftrightarrow a=1\)

hay \(\sqrt{1-x^2}=1\)

\(\Leftrightarrow x=0\)(thỏa mãn)

7 tháng 3 2016

Bài 2 giải như sau (sau khi tác giả đã sửa): Điều kiện \(x,y>0.\)

Từ hệ ta suy ra \(1+\frac{3}{x+3y}=\frac{2}{\sqrt{x}},1-\frac{3}{x+3y}=\frac{4\sqrt{2}}{\sqrt{7y}}.\)   Cộng và trừ hai phương trình, chia cả hai vế cho 2, ta sẽ được 2 phương trình  \(1=\frac{1}{\sqrt{x}}+\frac{2\sqrt{2}}{\sqrt{7y}},\frac{3}{x+3y}=\frac{1}{\sqrt{x}}-\frac{2\sqrt{2}}{\sqrt{7y}}.\) Nhân hai phương trình với nhau, vế theo vế, ta được 

\(\frac{3}{x+3y}=\frac{1}{x}-\frac{8}{7y}\to21xy=\left(x+3y\right)\left(7y-8x\right)\to21y^2-38xy-8x^2=0\to x=\frac{y}{2},x=-\frac{21}{4}y.\)

Đến đây ta được y=2x (trường hợp kia loại). Từ đó thế vào ta được \(1+\frac{3}{7x}=\frac{2}{\sqrt{x}}\to7x-14\sqrt{x}+3=0\to\sqrt{x}=\frac{7\pm2\sqrt{7}}{2}\to...\)
 

7 tháng 3 2016

bài nhìn kinh khủng thế :3

21 tháng 4 2017

\(\sqrt{3x^2-6x-6}=3\sqrt{\left(2-x\right)^5}+\left(7x-19\right)\sqrt{2-x}\)

Điều kiện: \(\hept{\begin{cases}3x^2-6x-6\ge0\\2-x\ge0\end{cases}}\)

\(\Rightarrow x\le1-\sqrt{3}\)

Ta có:

\(\frac{\sqrt{3x^2-6x-6}}{\sqrt{2-x}}=3\left(2-x\right)^2+\left(7x-19\right)\) (điều kiện \(x\le\frac{5}{6}-\frac{\sqrt{109}}{6}\))

\(\Leftrightarrow\frac{3x^2-6x-6}{2-x}=9x^4-30x^3-17x^2+70x+49\)

\(\Leftrightarrow\left(x+1\right)\left(3x-8\right)\left(3x^3-11x^2+4+13\right)=0\)

(Kết hợp với điều kiện ta suy ra) 

\(\Leftrightarrow x=-1\)

21 tháng 4 2017

x = 1 nha bạn

Cách giải y hệt bạn alibaba nguyễn. Các bạn làm theo nha

Đúng 100%

Đúng 100%

29 tháng 8 2019

a) ĐK: \(x\inℝ\).

Đặt \(\sqrt{x^2-3x+4}=a>0\)

\(x^2-5x+4-\left(2x-1\right)a=0\)

\(\Leftrightarrow a^2-\left(2x-1\right)a-2x=0\)

\(\Leftrightarrow-\left(a+1\right)\left(2x-a\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}a=-1\left(L\right)\\2x=a\left(C\right)\end{cases}}\)

Xét \(2x=a\Leftrightarrow\hept{\begin{cases}x>0\\a^2=4x^2\end{cases}}\Leftrightarrow\hept{\begin{cases}x>0\\-3x^2-3x+4=0\end{cases}}\Leftrightarrow x=\frac{-3+\sqrt{57}}{6}\) ( đã loại 1 nghiệm vì ko t/m x> 0)

P/s: em ko chắc:v

AH
Akai Haruma
Giáo viên
23 tháng 11 2018

Lời giải:

Đặt \(\sqrt{x+2}=a(a\geq 0)\Rightarrow 2=a^2-x\)

Khi đó pt đã cho trở thành:

\(x^3-3x^2+2a^3-3x.2=0\)

\(\Leftrightarrow x^3-3x^2+2a^3-3x(a^2-x)=0\)

\(\Leftrightarrow x^3+2a^3-3xa^2=0\)

\(\Leftrightarrow x(x^2-a^2)-2a^2(x-a)=0\)

\(\Leftrightarrow (x-a)(x^2+xa-2a^2)=0\)

\(\Leftrightarrow (x-a)[(x^2-a^2)+a(x-a)]=0\)

\(\Leftrightarrow (x-a)^2(x+2a)=0\)

TH1: \(x-a=0\Rightarrow x=a=\sqrt{x+2}\Rightarrow \left\{\begin{matrix} a\geq 0\\ x^2=x+2\end{matrix}\right.\)

\(\Rightarrow x=2\)

TH2: \(x+2a=0\Rightarrow x=-2a=-2\sqrt{x+2}\)

\(\Rightarrow \left\{\begin{matrix} x\leq 0\\ x^2=4(x+2)\end{matrix}\right.\Rightarrow x=2-2\sqrt{3}\)

Vậy PT có nghiệm \(x\in \left\{2-2\sqrt{3}; 2\right\}\)

23 tháng 11 2018

sao thầy(cô) trả lời nhanh quá vậy sao em trả lời kịp

SP không cánh mà đi

1 tháng 8 2017

b)  \(\frac{2\left(x+1\right)}{3x^2+x}+\frac{13\left(x+1\right)}{3x^2+x+6\left(x+1\right)}=6\)  (1)

Đặt  \(a=x+1;b=3x^2+x\)  thì

\(\left(1\right)\Leftrightarrow\frac{2a}{b}+\frac{13a}{b+6a}=6\)

\(\Leftrightarrow4a^2-7ab-2b^2=0\)

\(\Leftrightarrow\left(a-2b\right)\left(4a+b\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}a=2b\\a=-\frac{1}{4}b\end{cases}}\)

Đến đây thì dễ rồi

4 tháng 6 2019

Câu hỏi của Nguyễn Phương Nga - Toán lớp 9 - Học toán với OnlineMath

tham khảo 

4 tháng 6 2019

đây nè : https://olm.vn/hoi-dap/detail/78520355814.html

5 tháng 11 2018

ĐKXĐ \(2\le x\le4\).Đặt A=\(\sqrt[4]{\left(x-2\right)\left(4-x\right)}+\sqrt[4]{x-2}+\sqrt[4]{4-x}+6x\sqrt{3x}\)

Do x\(\ge2>0\)nên ADBĐT CAUCHY ta được:

\(\sqrt[4]{1\cdot1\cdot\left(x-2\right)\left(4-x\right)}\le\frac{1+1+x-2+4-x}{4}=1\)

\(\sqrt[4]{x-2}\le\frac{1+1+1+x-2}{4}=\frac{1}{4}\)

\(\sqrt[4]{4-x}\le\frac{1+1+1+4-x}{4}=\frac{7}{4}\)

\(6x\sqrt{3x}=2\sqrt{27x^3}\le x^3+27\)

_Do đó A\(\le1+\frac{1}{4}+\frac{7}{4}+x^3+27=x^3+30\)

Dấu = xảy ra \(\Leftrightarrow x=3\)(thỏa mãn ĐKXĐ)