K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 3 2017

xem trong mấy loại sách thầy mua có bài nào tương tự ko thì tự lm

kiểu j chẳng có

24 tháng 5 2022

\(A=\left(\dfrac{\sqrt{x}+1}{\sqrt{xy}+1}+\dfrac{\sqrt{xy}+\sqrt{x}}{1-\sqrt{xy}}+1\right):\left(1-\dfrac{\sqrt{xy}+\sqrt{x}}{\sqrt{xy}-1}-\dfrac{\sqrt{x}+1}{\sqrt{xy}+1}\right)\)

\(A=\left(\dfrac{\left(\sqrt{x}+1\right)\left(\sqrt{xy}-1\right)-\sqrt{x}\left(\sqrt{y}+1\right)\left(\sqrt{xy}+1\right)}{\left(\sqrt{xy}+1\right)\left(\sqrt{xy}-1\right)}+1\right)\)

       \(:\left(1-\dfrac{\sqrt{x}\left(\sqrt{y}+1\right)\left(\sqrt{xy}+1\right)-\left(\sqrt{x}+1\right)\left(\sqrt{xy}-1\right)}{\left(\sqrt{xy}-1\right)\left(\sqrt{xy}+1\right)}\right)\)

\(A=\left(\dfrac{\left(\sqrt{x}+1\right)\left(\sqrt{xy}-1\right)-\sqrt{x}\left(\sqrt{y}+1\right)\left(\sqrt{xy}+1\right)}{\left(\sqrt{xy}+1\right)\left(\sqrt{xy}-1\right)}+\dfrac{\left(\sqrt{xy}+1\right)\left(\sqrt{xy}-1\right)}{\left(\sqrt{xy}+1\right)\left(\sqrt{xy}-1\right)}\right)\)

\(:\left(\dfrac{\text{​​}\left(\sqrt{xy}-1\right)\left(\sqrt{xy}+1\right)}{\left(\sqrt{xy}-1\right)\left(\sqrt{xy}+1\right)}-\dfrac{\sqrt{x}\left(\sqrt{y}+1\right)\left(\sqrt{xy}+1\right)-\left(\sqrt{x}+1\right)\left(\sqrt{xy}-1\right)}{\left(\sqrt{xy}-1\right)\left(\sqrt{xy}+1\right)}\right)\)

\(A=\left(\dfrac{\left(\sqrt{x}+1\right)\left(\sqrt{xy}-1\right)-\sqrt{x}\left(\sqrt{y}+1\right)\left(\sqrt{xy}+1\right)+\left(\sqrt{xy}+1\right)\left(\sqrt{xy}-1\right)}{\left(\sqrt{xy}+1\right)\left(\sqrt{xy}-1\right)}\right)\)

\(.\left(\dfrac{\left(\sqrt{xy}-1\right)\left(\sqrt{xy}+1\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{xy}-1\right)-\sqrt{x}\left(\sqrt{y}+1\right)\left(\sqrt{xy}+1\right)-\left(\sqrt{x}+1\right)\left(\sqrt{xy}-1\right)}\right)\)

\(A=1\)

 

\(B=\dfrac{x+2}{\sqrt{x}\left(\sqrt{x}-1\right)}\cdot\dfrac{\sqrt{x}-1}{1}=\dfrac{x+2}{\sqrt{x}}\)

28 tháng 2 2022

Nếu không phiền, bạn có thể giải chi tiết cho mình được không ạ. Mình cảm ơn nhiều !

AH
Akai Haruma
Giáo viên
3 tháng 8 2021

Bạn cần làm gì với biểu thức này?
 

\(F=\dfrac{\sqrt{x}-\sqrt{y}}{xy\sqrt{xy}}:\left[\dfrac{x+y}{xy}\cdot\dfrac{1}{\left(\sqrt{x}+\sqrt{y}\right)^2}+\dfrac{2}{\sqrt{xy}\left(\sqrt{x}+\sqrt{y}\right)^2}\right]\)

\(=\dfrac{\sqrt{x}-\sqrt{y}}{xy\sqrt{xy}}:\left[\dfrac{x+y+2\sqrt{xy}}{xy\left(\sqrt{x}+\sqrt{y}\right)^2}\right]\)

\(=\dfrac{\sqrt{x}-\sqrt{y}}{xy\sqrt{xy}}\cdot xy=\dfrac{\sqrt{x}-\sqrt{y}}{\sqrt{xy}}\)

NV
13 tháng 12 2020

1. Với mọi số thực x;y;z ta có:

\(x^2+y^2+z^2+\dfrac{1}{2}\left(x^2+1\right)+\dfrac{1}{2}\left(y^2+1\right)+\dfrac{1}{2}\left(z^2+1\right)\ge xy+yz+zx+x+y+z\)

\(\Leftrightarrow\dfrac{3}{2}P+\dfrac{3}{2}\ge6\)

\(\Rightarrow P\ge3\)

\(P_{min}=3\) khi \(x=y=z=1\)

1.1

ĐKXĐ: ...

Đặt \(\left\{{}\begin{matrix}\dfrac{1}{\sqrt{x}}=a>0\\\dfrac{1}{\sqrt{y}}=b>0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a+\sqrt{2-b^2}=2\\b+\sqrt{2-a^2}=2\end{matrix}\right.\)

\(\Rightarrow a-b+\sqrt{2-b^2}-\sqrt{2-a^2}=0\)

\(\Leftrightarrow a-b+\dfrac{\left(a-b\right)\left(a+b\right)}{\sqrt{2-b^2}+\sqrt{2-a^2}}=0\)

\(\Leftrightarrow a=b\Leftrightarrow x=y\)

Thay vào pt đầu:

\(a+\sqrt{2-a^2}=2\Rightarrow\sqrt{2-a^2}=2-a\) (\(a\le2\))

\(\Leftrightarrow2-a^2=4-4a+a^2\Leftrightarrow2a^2-4a+2=0\)

\(\Rightarrow a=1\Rightarrow x=y=1\)

NV
13 tháng 12 2020

2.

\(\left\{{}\begin{matrix}x^2+xy+y^2=7\\\left(x^2+y^2\right)^2-x^2y^2=21\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x^2+xy+y^2=7\\\left(x^2+xy+y^2\right)\left(x^2-xy+y^2\right)=21\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x^2+xy+y^2=7\\x^2-xy+y^2=3\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}3x^2+3xy+3y^2=21\\7x^2-7xy+7y^2=21\end{matrix}\right.\)

\(\Rightarrow4x^2-10xy+4y^2=0\)

\(\Leftrightarrow2\left(2x-y\right)\left(x-2y\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}y=2x\\y=\dfrac{1}{2}x\end{matrix}\right.\)

Thế vào pt đầu

...

24 tháng 7 2018

\(a.R=\left(\dfrac{\sqrt{x}+1}{\sqrt{xy}+1}+\dfrac{\sqrt{x}\left(\sqrt{y}+1\right)}{1-\sqrt{xy}}+1\right):\left(1-\dfrac{\sqrt{x}+1}{\sqrt{xy}+1}-\dfrac{\sqrt{x}\left(\sqrt{y}+1\right)}{\sqrt{xy}-1}\right)\)

\(R=\left[\dfrac{\left(\sqrt{x}+1\right)\left(\sqrt{xy}-1\right)-\sqrt{x}\left(\sqrt{y}+1\right)\left(\sqrt{xy}+1\right)+xy-1}{\left(\sqrt{xy}+1\right)\left(\sqrt{xy}-1\right)}\right]:\left[\dfrac{xy-1-\left(\sqrt{x}+1\right)\left(\sqrt{xy}-1\right)-\sqrt{x}\left(\sqrt{y}+1\right)\left(\sqrt{xy}+1\right)}{\left(\sqrt{xy}+1\right)\left(\sqrt{xy}-1\right)}\right]\)

\(R=\dfrac{x\sqrt{y}-\sqrt{x}+\sqrt{xy}-1-xy-\sqrt{xy}-x\sqrt{y}-\sqrt{x}+xy-1}{xy-1}:\dfrac{xy-1-x\sqrt{y}+\sqrt{x}+\sqrt{xy}+1-xy-\sqrt{xy}-x\sqrt{y}-\sqrt{x}}{xy-1}\)

\(R=\dfrac{-2\sqrt{x}-2}{xy-1}:\dfrac{-2x\sqrt{y}-2\sqrt{xy}}{xy-1}\)

\(R=\dfrac{-2\left(\sqrt{x}+1\right)}{xy-1}.\dfrac{xy-1}{-2\left(x\sqrt{y}+\sqrt{xy}\right)}\)

\(R=\dfrac{\sqrt{x}+1}{x\sqrt{y}+\sqrt{xy}}\)

\(b.C=\dfrac{2\sqrt{x}}{\sqrt{x}+2}+\dfrac{7\sqrt{x}+4}{x-\sqrt{x}-6}-\dfrac{\sqrt{x}+2}{\sqrt{x}-3}\)

\(C=\dfrac{2\sqrt{x}\left(\sqrt{x}-3\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-3\right)}+\dfrac{7\sqrt{x}+4}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-3\right)}-\dfrac{\left(\sqrt{x}+2\right)\left(\sqrt{x}+2\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-3\right)}\)

\(C=\dfrac{2x-6\sqrt{x}+7\sqrt{x}+4-x-4\sqrt{x}-4}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-3\right)}\)

\(C=\dfrac{x-3\sqrt{x}}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-3\right)}=\dfrac{\sqrt{x}\left(\sqrt{x}-3\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-3\right)}\)

\(C=\dfrac{\sqrt{x}}{\sqrt{x}+2}\)

\(c.M=\left(\dfrac{1}{\sqrt{x}}+\dfrac{\sqrt{x}}{\sqrt{x}+1}\right):\dfrac{\sqrt{x}}{\sqrt{x}+x}=\dfrac{\sqrt{x}+1+x}{x+\sqrt{x}}.\dfrac{\sqrt{x}+x}{\sqrt{x}}=\dfrac{\sqrt{x}+1+x}{\sqrt{x}}\)