K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 5 2016

x= 0.761322463768116,

x= 0.369494467346496,

x=1.57660410301179

1 tháng 11 2019

nhiều thế giải ko đổi đâu bạn

1 tháng 11 2019

vậy trả lời câu a thôi

25 tháng 11 2015

vào câu hỏi tương tự nhé bạn, với lại mình chưa học lớp 9

25 tháng 11 2015

\(1\text{) }a=\sqrt{2x^2-4x+3}\Rightarrow x^2-2x=\frac{a^2-3}{2}\)

Pt trở thành \(\frac{a^2-3}{2}+3=2a\)

\(3\text{) }pt\Leftrightarrow2\left(x^2-2x+4\right)+\left(x+2\right)=3\sqrt{x+2}\sqrt{x^2-2x+4}\)

\(\Leftrightarrow\left(2\sqrt{x^2-2x+4}+\sqrt{x+2}\right)\left(\sqrt{x^2-2x+1}-\sqrt{x+2}\right)=0\)

3 tháng 11 2018

em ms hok lớp 1

31 tháng 3 2016

Đặt a=…b=…; tìm các hệ thức liên hệ vế trái vế phải

Chú ý: đ. Kiện, h.đ.thức, vi et...

Rút, thế....v.v...

31 tháng 3 2016

minh ra rui mai giai cho coi dung ko

30 tháng 3 2016

ps này có x=-1

30 tháng 3 2016

\(\Leftrightarrow\sqrt[3]{\left(2x^2+3x+2\right)}+\sqrt[3]{\left(x^2+3x+3\right)}=6x^2+12x+8\)

\(\Rightarrow\sqrt[3]{\left(2x^2+3x+2\right)}+\sqrt[3]{\left(x^2+3x+3\right)}-6x^2-12x-8=0\)

=>x=-1

21 tháng 9 2020

ĐKXĐ : \(x\ge\sqrt{3}\)

\(\sqrt{3x+\sqrt{3}}-\sqrt{x-\sqrt{3}}=2\sqrt{x}\)

\(\Leftrightarrow3x+\sqrt{3}-2\sqrt{\left(3x+\sqrt{3}\right)\left(x-\sqrt{3}\right)}+x-\sqrt{3}=4x\)

\(\Leftrightarrow2\sqrt{\left(3x+\sqrt{3}\right)\left(x-\sqrt{3}\right)}=0\)

\(\Leftrightarrow\orbr{\begin{cases}3x+\sqrt{3}=0\\x-\sqrt{3}=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\frac{-\sqrt{3}}{3}\left(ktm\right)\\x=\sqrt{3}\left(tm\right)\end{cases}}}\)

Vậy phương trình có nghiệm duy nhất là \(x=\sqrt{3}\)

21 tháng 9 2020

đk: \(x\ge\sqrt{3}\)

Ta có: \(\sqrt{3x+\sqrt{3}}-\sqrt{x-\sqrt{3}}=2\sqrt{x}\)

\(\Leftrightarrow3x+\sqrt{3}-2\sqrt{\left(3x+\sqrt{3}\right)\left(x-\sqrt{3}\right)}+x-\sqrt{3}=4x\)

\(\Leftrightarrow2\sqrt{\left(3x+\sqrt{3}\right)\left(x-\sqrt{3}\right)}=0\)

\(\Leftrightarrow\left(3x+\sqrt{3}\right)\left(x-\sqrt{3}\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}3x+\sqrt{3}=0\\x-\sqrt{3}=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-\frac{\sqrt{3}}{3}\left(ktm\right)\\x=\sqrt{3}\left(tm\right)\end{cases}}\)

Vậy \(x=\sqrt{3}\)