K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 12 2023

x(x + 2)(x + 3)(x + 5) = 72

⇔ (x² + 5x)(x² + 5x + 6) - 72 = 0 (1)

Đặt u = x² + 5x

⇒ x² + 5x + 6 = u + 6

(1) ⇔ u.(u + 6) - 72 = 0

⇔ u² + 6u - 72 = 0

⇔ u² + 12u - 6u - 72 = 0

⇔ (u² + 12u) - (6u + 72) = 0

⇔ u(u + 12) - 6(u + 12) = 0

⇔ (u + 12)(u - 6) = 0

⇔ u + 12 = 0 hoặc u - 6 = 0

*) u + 12 = 0

⇔ u = -12

⇒ x² + 5x = -12

⇔ x² + 5x + 12 = 0

⇔ x² + 2.5x/2 + 25/4 + 23/4 = 0

⇔ (x + 5/2)² + 23/4 = 0 (vô lý)

*) u - 6 = 0

⇔ u = 6

⇒ x² + 5x = 6

⇔ x² + 5x - 6 = 0

⇔ x² - x + 6x - 6 = 0

⇔ (x² - x) + (6x - 6) = 0

⇔ x(x - 1) + 6(x - 1) = 0

⇔ (x - 1)(x + 6) = 0

⇔ x - 1 = 0 hoặc x + 6 = 0

**) x - 1 = 0

⇔ x = 1

**) x + 6 = 0

⇔ x = -6

Vậy S = {-6; 1}