K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 2 2018

pt <=> (x^4+2x^3-3x^2)+(x^2+2x-3) = 0

<=> (x^2+2x-3).(x^2+1) = 0

<=> x^2+2x-3 = 0 ( vì x^2+1 > 0 )

<=> (x^2-x)+(3x-3) = 0

<=> (x-1).(x+3) = 0

<=> x-1=0 hoặc x+3=0

<=> x=1 hoặc x=-3

Vậy .........

Tk mk nha

10 tháng 2 2018

a) 2(x + 3)(x – 4) = (2x – 1)(x + 2) – 27

⇔ 2(x2 – 4x + 3x – 12) = 2x2 + 4x – x – 2 – 27

⇔ 2x2 – 2x – 24 = 2x2 + 3x – 29

⇔ -2x – 3x = 24 – 29

⇔ - 5x = - 5 ⇔ x = -5/-5 ⇔ x = 1

Tập nghiệm của phương trình : S = {1}

b) x2 – 4 – (x + 5)(2 – x) = 0

⇔ x2 – 4 + (x + 5)(x – 2) = 0 ⇔ (x – 2)(x + 2 + x + 5) = 0

⇔ (x – 2)(2x + 7) = 0 ⇔ x – 2 = 0 hoặc 2x + 7 = 0

⇔ x = 2 hoặc x = -7/2

Tập nghiệm của phương trình: S = {2; -7/2 }

c) ĐKXĐ : x – 2 ≠ 0 và x + 2 ≠ 0 (khi đó : x2 – 4 = (x – 2)(x + 2) ≠ 0)

⇔ x ≠ 2 và x ≠ -2

Quy đồng mẫu thức hai vế :

Khử mẫu, ta được : x2 + 4x + 4 – x2 + 4x – 4 = 4

⇔ 8x = 4 ⇔ x = 1/2( thỏa mãn ĐKXĐ)

Tập nghiệm của phương trình : S = {1/2}

d) ĐKXĐ : x – 1 ≠ 0 và x + 3 ≠ 0 (khi đó : x2 + 2x – 3 = (x – 1)(x + 3) ≠ 0)

⇔ x ≠ 1 và x ≠ -3

Quy đồng mẫu thức hai vế :

Khử mẫu, ta được : x2 + 3x + x + 3 – x2 + x – 2x + 2 + 4 = 0

⇔ 3x = -9 ⇔ x = -3 (không thỏa mãn ĐKXĐ)

Tập nghiệm của phương trình : S = ∅

15 tháng 5 2021

\(2\left(x+3\right)\left(x-4\right)=\left(2x-1\right)\left(x+2\right)-27\)

\(< =>2\left(x^2-x-12\right)=2x^2+3x-2-27\)

\(< =>2x^2-2x-24=2x^2+3x-2-27\)

\(< =>5x=-24+29=5\)

\(< =>x=\frac{5}{5}=1\)

4 tháng 3 2019

\(x^4+2x^3-2x^2+2x-3=0\Leftrightarrow\left(x-1\right)\left(x+3\right)\left(x^2+1\right)=0\Leftrightarrow\orbr{\begin{cases}x=1\\x=3\end{cases}}\)

4 tháng 3 2019

x^4-x^3+3x^3-3x^2+x^2-x+3x-3=0

(x^3+3x^2+x+1)(x-1)=0

.......

14 tháng 2 2023

`a,(2x-5)(12+5x)=0`

\(\Leftrightarrow\left[{}\begin{matrix}2x-5=0\\12+5x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=5\\5x=-12\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5}{2}\\x=-\dfrac{12}{5}\end{matrix}\right.\)

`b, (x-3)(x-4)-2(x-3)=0`

`<=>(x-3)(x-4-2)=0`

`<=>(x-3)(x-6)=0`

\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\\x-6=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=6\end{matrix}\right.\)

`c, x(x-1)(x+1)=0`

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x-1=0\\x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=1\\x=-1\end{matrix}\right.\)

`d, (2x)/3 +(2x-1)/6=0`

`<=> (4x)/6 +(2x-1)/6=0`

`<=> (4x+2x-1)/6=0`

`<=> (6x-1)/6=0`

`<=> 6x-1=0`

`<=> 6x=1`

`<=>x=1/6` ( đề là vậy à bạn )

 

14 tháng 2 2023

 a) \(\left(2x-5\right)\left(12+5x\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}2x-5=0\\12+5x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=5\\5x=-12\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2,5\\x=-2,4\end{matrix}\right.\)

b) \(\left(x-3\right)\left(x-4\right)-2\left(x-3\right)=0\)

\(\Leftrightarrow\left(x-3\right)\left[\left(x-4\right)-2\right]=0\)

\(\Leftrightarrow\left(x-3\right)\left(x-6\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\\x-6=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=6\end{matrix}\right.\)

c) \(x\left(x-1\right)\left(x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+1=0\\x-1=0\\x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=1\\x=0\end{matrix}\right.\)

d) \(\dfrac{2x}{3}+\dfrac{2x-1}{6}=0\)

\(\Leftrightarrow\dfrac{4x+2x-1}{6}=0\)

\(\Leftrightarrow6x-1=0\)

\(\Leftrightarrow6x=1\Leftrightarrow x=\dfrac{1}{6}\)

 

 

1: Ta có: \(2x\left(x+3\right)-6\left(x-3\right)=0\)

\(\Leftrightarrow2x^2+6x-6x+18=0\)

\(\Leftrightarrow2x^2+18=0\left(loại\right)\)

2: Ta có: \(2x^2\left(2x+3\right)+\left(2x+3\right)=0\)

\(\Leftrightarrow2x+3=0\)

hay \(x=-\dfrac{3}{2}\)

3: Ta có: \(\left(x-2\right)\left(x+1\right)-4x\left(x-2\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(1-3x\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=\dfrac{1}{3}\end{matrix}\right.\)

4: Ta có: \(2x\left(x-5\right)-3x+15=0\)

\(\Leftrightarrow\left(x-5\right)\left(2x-3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=5\\x=\dfrac{3}{2}\end{matrix}\right.\)

5: Ta có: \(3x\left(x+4\right)-2x-8=0\)

\(\Leftrightarrow\left(x+4\right)\left(3x-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-4\\x=\dfrac{2}{3}\end{matrix}\right.\)

6: Ta có: \(x^2\left(2x-6\right)+2x-6=0\)

\(\Leftrightarrow2x-6=0\)

hay x=3

3 tháng 3 2020

Bài 1:

1. \(x-8=3-2\left(x+4\right)\)

\(x-8=3-2x-8\)

\(3x=3\Rightarrow x=1\)

2. \(2\left(x+3\right)-3\left(x-1\right)=2\)

\(2x+6-3x+3=2\)

\(-x+9=2\Rightarrow x=7\)

3. \(4\left(x-5\right)-\left(3x-1\right)=x-19\)

\(4x-20-3x+1=x-19\)

\(0x=0\Rightarrow x=0\)

4. \(7-\left(x-2\right)=5\left(2x-3\right)\)

\(7-x+2=10x-15\)

\(-11x=-24\Rightarrow x=\frac{24}{11}\)

5. \(32-4\left(0,5y-5\right)=3y+2\)

\(32-2y+20=3y+2\)

\(-5y=-50\Rightarrow y=10\)

6. \(3\left(x-1\right)-x=2x-3\)

\(3x-3-x=2x-3\)

\(0x=0\Rightarrow x=0\)

Bài 2:

1. \(\frac{2-x}{3}=\frac{3-2x}{5}\)

\(\frac{\left(2-x\right)5}{15}-\frac{\left(3-2x\right)3}{15}=0\)

\(\frac{10-5x-9+6x}{15}=0\)

\(x+1=0\Rightarrow x=-1\)

2. \(\frac{3-4x}{4}=\frac{x+2}{5}\)

\(\frac{5\left(3-4x\right)}{20}-\frac{4\left(x+2\right)}{20}=0\)

\(\frac{15-20x-4x-8}{20}=0\)

\(7-24x=0\)

\(24x=7\Rightarrow x=\frac{7}{24}\)

4 tháng 3 2020

Bạn giúp mình nốt nha ☺

20 tháng 4 2022

a,\(x\in\left\{5;1,5;\dfrac{-4}{3}\right\}\)

12 tháng 4 2022

\(a,\dfrac{x-3}{x}=\dfrac{x-3}{x+3}\)\(\left(đk:x\ne0,-3\right)\)

\(\Leftrightarrow\dfrac{x-3}{x}-\dfrac{x-3}{x+3}=0\)

\(\Leftrightarrow\dfrac{\left(x-3\right)\left(x+3\right)-x\left(x-3\right)}{x\left(x+3\right)}=0\)

\(\Leftrightarrow x^2-9-x^2+3x=0\)

\(\Leftrightarrow3x-9=0\)

\(\Leftrightarrow3x=9\)

\(\Leftrightarrow x=3\left(n\right)\)

Vậy \(S=\left\{3\right\}\)

12 tháng 4 2022

\(b,\dfrac{4x-3}{4}>\dfrac{3x-5}{3}-\dfrac{2x-7}{12}\)

\(\Leftrightarrow\dfrac{4x-3}{4}-\dfrac{3x-5}{3}+\dfrac{2x-7}{12}>0\)

\(\Leftrightarrow\dfrac{3\left(4x-3\right)-4\left(3x-5\right)+2x-7}{12}>0\)

\(\Leftrightarrow12x-9-12x+20+2x-7>0\)

\(\Leftrightarrow2x+4>0\)

\(\Leftrightarrow2x>-4\)

\(\Leftrightarrow x>-2\)