K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
GK
5
N
9 tháng 10 2019
\(DK:x\in\left[\frac{7}{2};5\right]\)
PT\(\Leftrightarrow\left(\sqrt{x-3}-1\right)+\left(\sqrt{5-x}-1\right)+\left(\sqrt{2x-7}-1\right)-\left(x-4\right)\left(2x-1\right)=0\)
\(\Leftrightarrow\frac{x-4}{\sqrt{x-3}+1}-\frac{x-4}{\sqrt{5-x}+1}+\frac{2\left(x-4\right)}{\sqrt{2x-7}+1}-\left(x-4\right)\left(2x-1\right)=0\)
\(\Leftrightarrow\left(x-4\right)\left(\frac{1}{\sqrt{x-3}+1}-\frac{1}{\sqrt{5-x}+1}+\frac{1}{\sqrt{2x-7}+1}-2x+1\right)=0\)
Vi \(\frac{1}{\sqrt{x-3}+1}-\frac{1}{\sqrt{5-x}+1}+\frac{1}{\sqrt{2x-7}+1}-2x+1\ne0\)(voi moi \(x\in\left[\frac{7}{2};5\right]\)
\(\Rightarrow x=4\)
Vay nghiem cua PT la \(x=4\)
NV
29
BT
0
Lời giải:
Điều kiện \(x\geq 0\)
\(\text{PT}\Leftrightarrow 2(x^2+2x+4)=3\sqrt{4x(x^2+4)}\)
Áp dụng bất đẳng thức AM-GM:
\(2(x^2+2x+4)=3\sqrt{4x(x^2+4)}\leq 3\left (\frac{4x+x^2+4}{2}\right)\)
\(\Rightarrow 4(x^2+2x+4)\leq 3(x^2+4x+4)\Leftrightarrow (x-2)^2\leq 0\)
Ta biết rằng \((x-2)^2\geq 0\forall x\in\mathbb{R}\) nên dấu bằng xảy ra khi \(x=2\)
Vậy \(x=2\) là nghiệm của phương trình.