K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 2 2019

ĐKXĐ: \(x>-\frac{3}{2}\)

\(x+1+\sqrt{2x+3}=\frac{8x^2+18x+11}{2\sqrt{2x+3}}\left(1\right)\)

Đặt \(x+1=a>-\frac{1}{2};\sqrt{2x+3}=b>0\)

\(\Rightarrow8x^2+18x+11=a^2+b^2\)

Khi đó, phương trình (1) trở thành:

\(a+b=\frac{a^2+b^2}{2b}\Leftrightarrow2ab+2b^2=a^2+b^2\)

\(\Leftrightarrow8a^2-2ab-b^2=0\Leftrightarrow\left(2a-b\right)\left(4a+b\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}2a=b\\b=-4a\end{cases}}\)

Với từng trường hợp, bạn thay a,b theo như cách đặt, sau đó bình phương lên và sử dụng công thức nghiệm hoặc công thức nghiệm thu gọn để1 lấy nghiệm và so sánh với điều kiện bài toán nhé!

HỌC TỐT!^_^

NV
16 tháng 2 2019

ĐKXĐ: \(x>-\dfrac{3}{2}\)

\(\Leftrightarrow x+1=\dfrac{8x^2+18x+11}{2\sqrt{2x+3}}-\sqrt{2x+3}\)

\(\Leftrightarrow x+1=\dfrac{8x^2+14x+5}{2\sqrt{2x+3}}=\dfrac{\left(2x+1\right)\left(4x+5\right)}{2\sqrt{2x+3}}\)

\(\Leftrightarrow\left(2x+2\right)\sqrt{2x+3}=\left(2x+1\right)\left(4x+5\right)\)

Đặt \(\sqrt{2x+3}=a>0\Rightarrow\left(a^2-1\right)a=\left(a^2-2\right)\left(2a^2-1\right)\)

\(\Leftrightarrow2a^4-a^3-5a^2+a+2=0\)

\(\Leftrightarrow\left(a^2-a-1\right)\left(2a^2+a-2\right)=0\Rightarrow\left[{}\begin{matrix}a=\dfrac{1+\sqrt{5}}{2}\\a=\dfrac{1-\sqrt{5}}{2}\left(l\right)\\a=\dfrac{-1+\sqrt{17}}{4}\\a=\dfrac{-1-\sqrt{17}}{4}\left(l\right)\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}\sqrt{2x+3}=\dfrac{1+\sqrt{5}}{2}\\\sqrt{2x+3}=\dfrac{-1+\sqrt{17}}{4}\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=\dfrac{-3+\sqrt{5}}{4}\\x=\dfrac{-15-\sqrt{17}}{16}\end{matrix}\right.\)

14 tháng 10 2021

\(a,ĐK:x\ge1\\ PT\Leftrightarrow\sqrt{x-1}+2\sqrt{x-1}-5\sqrt{x-1}=-2\\ \Leftrightarrow-2\sqrt{x-1}=-2\Leftrightarrow\sqrt{x-1}=1\\ \Leftrightarrow x-1=1\Leftrightarrow x=2\left(tm\right)\\ b,ĐK:x\ge0\\ PT\Leftrightarrow\dfrac{1}{3}\sqrt{2x}-2\sqrt{2x}+3\sqrt{2x}=12\\ \Leftrightarrow\dfrac{4}{3}\sqrt{2x}=12\Leftrightarrow\sqrt{2x}=9\\ \Leftrightarrow2x=81\Leftrightarrow x=\dfrac{81}{2}\left(tm\right)\)

25 tháng 11 2023

2: ĐKXĐ: x>=0

\(\sqrt{3x}-2\sqrt{12x}+\dfrac{1}{3}\cdot\sqrt{27x}=-4\)

=>\(\sqrt{3x}-2\cdot2\sqrt{3x}+\dfrac{1}{3}\cdot3\sqrt{3x}=-4\)

=>\(\sqrt{3x}-4\sqrt{3x}+\sqrt{3x}=-4\)

=>\(-2\sqrt{3x}=-4\)

=>\(\sqrt{3x}=2\)

=>3x=4

=>\(x=\dfrac{4}{3}\left(nhận\right)\)

3: 

ĐKXĐ: x>=0

\(3\sqrt{2x}+5\sqrt{8x}-20-\sqrt{18}=0\)

=>\(3\sqrt{2x}+5\cdot2\sqrt{2x}-20-3\sqrt{2}=0\)

=>\(13\sqrt{2x}=20+3\sqrt{2}\)

=>\(\sqrt{2x}=\dfrac{20+3\sqrt{2}}{13}\)

=>\(2x=\dfrac{418+120\sqrt{2}}{169}\)

=>\(x=\dfrac{209+60\sqrt{2}}{169}\left(nhận\right)\)

4: ĐKXĐ: x>=-1

\(\sqrt{16x+16}-\sqrt{9x+9}=1\)

=>\(4\sqrt{x+1}-3\sqrt{x+1}=1\)

=>\(\sqrt{x+1}=1\)

=>x+1=1

=>x=0(nhận)

5: ĐKXĐ: x<=1/3

\(\sqrt{4\left(1-3x\right)}+\sqrt{9\left(1-3x\right)}=10\)

=>\(2\sqrt{1-3x}+3\sqrt{1-3x}=10\)

=>\(5\sqrt{1-3x}=10\)

=>\(\sqrt{1-3x}=2\)

=>1-3x=4

=>3x=1-4=-3

=>x=-3/3=-1(nhận)

6: ĐKXĐ: x>=3

\(\dfrac{2}{3}\sqrt{x-3}+\dfrac{1}{6}\sqrt{x-3}-\sqrt{x-3}=-\dfrac{2}{3}\)

=>\(\sqrt{x-3}\cdot\left(\dfrac{2}{3}+\dfrac{1}{6}-1\right)=-\dfrac{2}{3}\)

=>\(\sqrt{x-3}\cdot\dfrac{-1}{6}=-\dfrac{2}{3}\)

=>\(\sqrt{x-3}=\dfrac{2}{3}:\dfrac{1}{6}=\dfrac{2}{3}\cdot6=\dfrac{12}{3}=4\)

=>x-3=16

=>x=19(nhận)

Ta có: \(\sqrt{18x+9}-\sqrt{8x+4}+\dfrac{1}{3}\sqrt{2x+1}=4\)

\(\Leftrightarrow3\sqrt{2x+1}-2\sqrt{2x+1}+\dfrac{1}{3}\sqrt{2x+1}=4\)

\(\Leftrightarrow\dfrac{4}{3}\sqrt{2x+1}=4\)

\(\Leftrightarrow2x+1=9\)

hay x=4

24 tháng 9 2023

a) \(\sqrt{x-1}+\sqrt{4x-4}-\sqrt{25x-25}+2=0\) (ĐK: \(x\ge1\)

\(\Leftrightarrow\sqrt{x-1}+\sqrt{4\left(x-1\right)}-\sqrt{25\left(x-1\right)}+2=0\)

\(\Leftrightarrow\sqrt{x-1}+2\sqrt{x-1}-5\sqrt{x-1}+2=0\)

\(\Leftrightarrow-2\sqrt{x-1}=-2\)

\(\Leftrightarrow\sqrt{x-1}=\dfrac{2}{2}\)

\(\Leftrightarrow\sqrt{x-1}=1\)

\(\Leftrightarrow x-1=1\)

\(\Leftrightarrow x=2\left(tm\right)\)

b) \(\sqrt{16x+16}-\sqrt{9x+9}+\sqrt{4x+4}+\sqrt{x+1}=16\) (ĐK: \(x\ge-1\))

\(\Leftrightarrow\sqrt{16\left(x+1\right)}-\sqrt{9\left(x+1\right)}+\sqrt{4\left(x+1\right)}+\sqrt{x+1}=16\)

\(\Leftrightarrow4\sqrt{x+1}-3\sqrt{x+1}+2\sqrt{x+1}+\sqrt{x+1}=16\)

\(\Leftrightarrow4\sqrt{x+1}=16\)

\(\Leftrightarrow\sqrt{x+1}=4\)

\(\Leftrightarrow x+1=16\)

\(\Leftrightarrow x=15\left(tm\right)\)

8 tháng 1 2020
https://i.imgur.com/nb5inR8.png
AH
Akai Haruma
Giáo viên
1 tháng 10 2021

Lời giải:

a. ĐKXĐ: $x\geq 0$

$2\sqrt{2x}-5\sqrt{8x}+7\sqrt{18x}=28$

$\Leftrightarrow 2\sqrt{2x}-10\sqrt{2x}+21\sqrt{2x}=28$

$\Leftrightarrow 13\sqrt{2x}=28$

$\Leftrightarrow \sqrt{2x}=\frac{28}{13}$

$\Leftrightarrow 2x=\frac{784}{169}$

$\Leftrightarrow x=\frac{392}{169}$

b. ĐKXĐ: $x\geq 5$

PT $\Leftrightarrow \sqrt{4}.\sqrt{x-5}+\sqrt{x-5}-\frac{1}{3}.\sqrt{9}.\sqrt{x-5}=4$

$\Leftrightarrow 2\sqrt{x-5}+\sqrt{x-5}-\sqrt{x-5}=4$

$\Leftrightarrow 2\sqrt{x-5}=4$

$\Leftrightarrow \sqrt{x-5}=2$

$\Leftrightarrow x-5=4$

$\Leftrightarrow x=9$ (tm)

c. ĐKXĐ: $x\geq \frac{2}{3}$ hoặc $x< -1$

PT $\Leftrightarrow \frac{3x-2}{x+1}=9$

$\Rightarrow 3x-2=9(x+1)$

$\Leftrightarrow x=\frac{-11}{6}$ (tm)

Y
22 tháng 5 2019

ĐKXĐ : \(x>-\frac{3}{2}\)

pt \(\Leftrightarrow2\left(x+1\right)\left(2x+3\right)=8x^2+18x+11\)

\(\Leftrightarrow2x^2+10x+6=8x^2+18x+11\)

\(\Leftrightarrow6x^2+8x+5=0\)

\(\Leftrightarrow6\left(x^2+\frac{4}{3}x+\frac{5}{6}\right)=0\)

\(\Leftrightarrow6\left(x+\frac{2}{3}\right)^2+\frac{7}{3}=0\) ( ***** )

Vậy pt vô nghiệm