K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 9 2016

Ta có \(1\sqrt{x-2}\le\frac{1+x-2}{2}=\frac{x-1}{2}\)

\(1\sqrt{y+2009}\le\frac{1+y+2009}{2}=\frac{y+2010}{2}\)

\(1\sqrt{z-2010}\le\frac{1+z-2010}{2}=\frac{z-2009}{2}\)

Cộng vế theo vế ta được

\(1\sqrt{x-2}+\sqrt{y+2009}+\sqrt{z-2010}\)

\(\le\)\(\frac{x+y+z}{2}\)

Đấu = xảy ra khi x = 3; y = - 2008; z = 2011

4 tháng 12 2016

\(x-2008=X;y-2009=Y;z-2010=Z\)

\(\sqrt{X}+\sqrt{Y}+\sqrt{Z}+3012=\frac{1}{2}\left(X+Y+Z+2008+2009+2010\right)\)

\(2.\sqrt{X}+2\sqrt{Y}+2\sqrt{Z}+2.3012=X+Y+Z+2009\cdot3\)

\(\left(X-2\sqrt{X}+1\right)+\left(Y-2\sqrt{Y}+1\right)+\left(Z-2\sqrt{Z}+1\right)+3.2008=2.3012\)

\(\left(\sqrt{X}-1\right)^2+\left(\sqrt{Y}-1\right)^2+\left(\sqrt{Z}-1\right)^2=2.3012-3.2008=0\)

\(X=1;Y=1;Z=1\Rightarrow x=2009;y=2010;z=2011\)

9 tháng 6 2015

Điều kiện : \(x\ge2;y\ge-2009;z\ge2010;x+y+z\ge0\)

PT <=> \(2.\sqrt{x-2}+2.\sqrt{y+2009}+2.\sqrt{z-2010}=x+y+z\)

Áp dụng B ĐT Cô- si với 2 số dương a; b : \(2\sqrt{ab}\le a+b\) ta có:

\(2.\sqrt{x-2}\le x-2+1=x-1\)

\(2.\sqrt{y+2009}\le y+2009+1=y+2010\)

\(2.\sqrt{z-1010}\le z-2010+1=z-2009\)

=> \(2.\sqrt{x-2}+2.\sqrt{y+2009}+2.\sqrt{z-2010}\le x-1+y+2010+z-2009=x+y+z\)

Dấu "=" xảy ra <=> x - 2 = 1 ; y + 2009 = 1; z - 2010 = 1

=> x = 3; y = -2008; z = 2011 là nghiệm của PT

26 tháng 3 2016

Điều kiện \(x\ge2\) vs \(y\ge-2009\) vs \(z\ge2010\)  Khi đó

PT \(\Leftrightarrow\) \(\left(\sqrt{x-2}-1\right)^2+\left(\sqrt{y+2009}-1\right)^2+\left(\sqrt{z-2010}-1\right)^2=0\)

nên => x=3 ; y=-2008 vs z=2011

10 tháng 5 2020

\(\hept{\begin{cases}\left(x+\sqrt{x^2+2012}\right)\left(y+\sqrt{y^2+2012}\right)=2012\left(1\right)\\x^2+z^2-4\left(y+z\right)+8=0\left(2\right)\end{cases}}\)

Ta có:(1) \(\Leftrightarrow\left(x+\sqrt{x^2+2012}\right)\left(y+\sqrt{y^2+2012}\right)\left(\sqrt{y^2+2012}-y\right)\)\(=2012\left(\sqrt{y^2+2012}-y\right)\)(Do \(\sqrt{y^2+2012}-y\ne0\forall y\))

\(\Leftrightarrow2012\left(x+\sqrt{x^2+2012}\right)=2012\left(\sqrt{y^2+2012}-y\right)\)

\(\Leftrightarrow x+\sqrt{x^2+2012}=\sqrt{y^2+2012}-y\)\(\Leftrightarrow x+y=\sqrt{y^2+2012}-\sqrt{x^2+2012}\)

\(\Leftrightarrow x+y=\)\(\frac{\left(\sqrt{y^2+2012}+\sqrt{x^2+2012}\right)\left(\sqrt{y^2+2012}-\sqrt{x^2+2012}\right)}{\sqrt{y^2+2012}+\sqrt{x^2+2012}}\)

\(\Leftrightarrow x+y=\frac{y^2-x^2}{\sqrt{y^2+2012}+\sqrt{x^2+2012}}\)\(\Leftrightarrow\left(x+y\right)\frac{\sqrt{y^2+2012}-y+\sqrt{x^2+2012}+x}{\sqrt{y^2+2012}+\sqrt{x^2+2012}}=0\)

Do \(\hept{\begin{cases}\sqrt{y^2+2012}>\sqrt{y^2}=\left|y\right|\ge y\forall y\\\sqrt{x^2+2012}>\sqrt{x^2}=\left|x\right|\ge-x\forall x\end{cases}}\)\(\Rightarrow\sqrt{y^2+2012}-y+\sqrt{x^2+2012}+x>0\forall x,y\Rightarrow x+y=0\)

\(\Rightarrow y=-x\)

Thay y = -x vào (2), ta được: \(x^2+z^2+4x-4z+8=0\)

\(\Leftrightarrow\left(x+2\right)^2+\left(z-2\right)^2=0\Leftrightarrow\hept{\begin{cases}x=-2\\z=2\end{cases}}\Rightarrow y=-x=2\)

Vậy hệ có nghiệm \(\left(x;y;z\right)=\left(-2;2;2\right)\)

18 tháng 8 2020

\(x^2+2x\sqrt{x+\frac{1}{x}}=8x-1\)(đk;x>0)

\(\Leftrightarrow x^2+2\sqrt{x}\cdot\sqrt{x^2+1}=8x-1\)

\(\Leftrightarrow\left(x^2+1\right)+2\sqrt{x}\cdot\sqrt{x^2+1}+x=9x\)

\(\Leftrightarrow\left(\sqrt{x^2+1}+\sqrt{x}\right)^2-9x=0\)

\(\Leftrightarrow\left(\sqrt{x^2+1}+\sqrt{x}+3\sqrt{x}\right)\left(\sqrt{x^2+1}+\sqrt{x}-3\sqrt{x}\right)=0\)

\(\Leftrightarrow\left(\sqrt{x^2+1}+4\sqrt{x}\right)\left(\sqrt{x^2+1}-2\sqrt{x}\right)=0\)

\(\Leftrightarrow\sqrt{x^2+1}-2\sqrt{x}=0\)(vì \(\sqrt{x^2+1}+4\sqrt{x}>0\))

\(\Leftrightarrow x^2-4x+1=0\)

\(\Leftrightarrow\left(x-2+\sqrt{3}\right)\left(x-2-\sqrt{3}\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=2-\sqrt{3}\\x=2+\sqrt{3}\end{cases}}\)(thõa mãn điều kiện)

18 tháng 8 2020

\(\sqrt{x-2009}-\sqrt{y-2008}-\sqrt{z-2}=\frac{1}{2}\left(x+y+z\right)\)(đk:x>2009,y>2008,z>2)

\(\Leftrightarrow\left(\sqrt{x-2009}-1\right)^2+\left(\sqrt{x-2008}+1\right)^2+\left(\sqrt{z-2}+1\right)^2+4014=0\)(không thõa mãn)

Lý do có kết quả trên là vì chuyển 1\2 qua vế trái và tách theo hằng đẳng thức

Bài tiếp theo cũng làm tương tự

4 tháng 4 2017

k biết

4 tháng 4 2017

tốt ghê ha

nếu vậy thì đừng trả lời

10 tháng 11 2016

gt pt nó thành nhân tử thay vào P tính

10 tháng 11 2016

mk nhớ lm bài tương tự thế này r` bn chịu khó mở ra xem lại ở đây olm.vn/?g=page.display.showtrack&id=424601&limit=260, ấn vào chữ Trang tiếp theo để tìm thêm nhé

26 tháng 9 2017

Thưa bn mk đã làm ra nhưng không biết có đúng không. Xem nhá:

Ta có:

\(\frac{\sqrt{x-2009}-1}{x-2009}+\frac{\sqrt{y-2001}-1}{y-2001}+\frac{\sqrt{z-2011}-1}{z-2011}=\frac{3}{4}\Leftrightarrow"\frac{1}{\sqrt{x-2009}}-\frac{1}{2}"^2+\)

\("\frac{1}{\sqrt{y-2010}}-\frac{1}{2}"^2-"\frac{1}{\sqrt{z-2011}}-\frac{1}{2}"^2=0\)

\(\Rightarrow x=2013;y=2014;z=2015\)

P/s: Bn thay Ngoặc Kép thành Ngoặc Đơn nhé