Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
....
- giải
- giải
- giải
=> x =1
- bằng mấy nx thì không biết ...
\(\sqrt{8x+1}+\sqrt{46-10x}=-x^3+5x^2+4x+1<=>\sqrt{8x+1}-3+\sqrt{46-10x}-6=-x^3+5x^2+4x+1-3-6\)
\(<=> (x-1)(\frac{8}{\sqrt{8x+1}+3}-5 +x^2-4x-3-\frac{10}{\sqrt{46-10x}+6})=0\)
Xét : \((\frac{8}{\sqrt{8x+1}+3}-5 +x^2-4x-3-\frac{10}{\sqrt{46-10x}+6}) (*)\) ( với điều kiện \(\frac{23}{5}\geq x\geq- \frac{1}{8}\))
\((*)= \frac{8-5(\sqrt{8x+1}+3)}{\sqrt{8x+1}+3} +(x^2-4x-3)-\frac{10}{\sqrt{46-10x}+6})\)
\(= \frac{-7-5(\sqrt{8x+1})}{\sqrt{8x+1}+3} +(x^2-4x-3)-\frac{10}{\sqrt{46-10x}+6}) <0\)
\(=> x=1\)
tiếp tục câu 2,vì máy bị lỗi nên phải tách ra:
Ta có:\(x^3+y^3+z^3-3xyz=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-xz\right)\)
\(=\left(x+y+z\right)\left(\left(x+y+z\right)^2-3\left(xy+xz+yz\right)\right).\)
Dó đó:\(x^3+y^3+z^3-3xyz+2010\left(x+y+z\right)\)
\(=\left(x+y+z\right)\left(\left(x+y+z\right)^2-3\left(xy+yz+xz\right)+2010\right)\)
\(=\left(x+y+z\right)^3.\)(2)
TỪ \(\left(1\right),\left(2\right)\)suy ra \(P\ge\frac{\left(x+y+z\right)^2}{\left(x+y+z\right)^3}=\frac{1}{x+y+z}.\)
Dấu \(=\)xảy ra khi \(x=y=z=\frac{\sqrt{2010}}{3}\)
2)Ta có:
\(x\left(x^2-yz+2010\right)=x\left(x^2+xy+xz+1340\right)>0\)
Tương tự ta có:\(y\left(y^2-xz+2010\right)>0,z\left(z^2-xy+2010\right)>0\)
Áp dụng svac-xơ ta có:
\(P=\frac{x^2}{x\left(x^2-yz+2010\right)}+\frac{y^2}{y\left(y^2-xz+2010\right)}+\frac{z^2}{z\left(z^2-xy+2010\right)}\)
\(\ge\frac{\left(x+y+z\right)^2}{x^3+y^3+z^3-3xyz+2010\left(x+y+z\right)}.\)(1)
Lời giải:
ĐKXĐ: \(\frac{23}{5}\geq x\geq \frac{-1}{8}\)
PT \(\Leftrightarrow (\sqrt{8x+1}-3)+(\sqrt{46-10x}-6)=-x^3+5x^2+4x-8\)
\(\Leftrightarrow \frac{8x-8}{\sqrt{8x+1}+3}-\frac{10x-10}{\sqrt{46-10x}+6}=(x-1)(-x^2+4x+8)\)
\(\Leftrightarrow (x-1)\left[\frac{8}{\sqrt{8x+1}+3}-\frac{10}{\sqrt{46-10x}+6}+x^2-4x-8\right]=0\)
Xét \(\frac{8}{\sqrt{8x+1}+3}-\frac{10}{\sqrt{46-10x}+6}+x^2-4x-8\). Với mọi $x$ thuộc ĐKXĐ ta có:
\(\frac{8}{\sqrt{8x+1}+3}\leq \frac{8}{3}\)
\(\frac{10}{\sqrt{46-10x}+6}>0\)
\(\frac{23}{5}\geq x\geq \frac{-1}{8}\Rightarrow 5>x>-1\Rightarrow (x+1)(x-5)< 0\)
\(\Rightarrow x^2-4x-8< -3\)
Do đó: \(\frac{8}{\sqrt{8x+1}+3}-\frac{10}{\sqrt{46-10x}+6}+x^2-4x-8< \frac{8}{3}+(-3)< 0\)
Suy ra $x-1=0\Rightarrow x=1$ là nghiệm duy nhất.