Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) |3x| = 2x + 1
<=> 3x = 2x+1 hoặc 3x = -2x - 1
<=> x= 1 hoặc x = -1/5
b) |x+3| = 3x - 1 ( trong căn là hằng đẳng thức (x+3)^2 , là bình phương của 1 số nên bạn ko cần đặt điều kiện)
và cách làm tương tự
goodluck!
à còn cái điều kiện vế phải nha bạn
a) 2x- 1 >= 0 => x > 1/2 nên ta loại nghiệm -1/5 nha
b) 3x - 1>= 0 => x > 1/3 bạn tự loại nghiệm nhé
a) ĐKXĐ : \(x\ge-1\)
\(\sqrt{16x+16}-\sqrt{9x+9}=4\)\(\Leftrightarrow4\sqrt{x+1}-3\sqrt{x+1}=4\)
\(\Leftrightarrow\sqrt{x+1}=4\Leftrightarrow x+1=16\Leftrightarrow x=15\)
b) ĐKXĐ : \(x\ge\frac{2}{3}\)
\(\sqrt{3x-2}-\sqrt{x+7}=1\Leftrightarrow3x-2+x+7-2\sqrt{3x-2}.\sqrt{x+7}=1\)
\(\Leftrightarrow4x+4-2\sqrt{3x^2+19x-14}=0\)\(\Leftrightarrow2x+2-\sqrt{3x^2+19x-14}=0\)
\(\Leftrightarrow2x+2=\sqrt{3x^2+19x-14}\Leftrightarrow\left(2x+2\right)^2=3x^2+19x-14\)
\(\Leftrightarrow4x^2+8x+4=3x^2+19x-14\Leftrightarrow x^2-11x+18=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=9\\x=2\end{cases}\left(tm\right)}\)
c) câu cuối bình phương tương tự câu b
Ai hack nick mình thì trả lại đi !!!
nick :
- Tên: Vô danh
- Đang học tại: Trường Tiểu học Số 1 Nà Nhạn
- Địa chỉ: Huyện Điện Biên - Điện Biên
- Điểm hỏi đáp: 112SP, 0GP
- Điểm hỏi đáp tuần này: 47SP, 0GP
- Thống kê hỏi đáp
Ai hack hộ mình rồi gửi cho mình nhé mình cảm ơn
Ai là bạn của mình chắn chắn biết nên vào phần bạn bè hỏi mình mới là chủ nick
Mong olm xem xét ko cho ai hack nick nhau nữa ạ! Xin chân thành cảm ơn !
LInk : https://olm.vn/thanhvien/lehoangngantoanhoc
a) ĐK : \(x\ge1\)
pt <=> \(\sqrt{3^2\left(x-1\right)}-\frac{1}{2}\sqrt{2^2\left(x-1\right)}=2\)
<=> \(\left|3\right|\sqrt{x-1}-\frac{1}{2}\cdot\left|2\right|\sqrt{x-1}=2\)
<=> \(3\sqrt{x-1}-1\sqrt{x-1}=2\)
<=> \(2\sqrt{x-1}=2\)
<=> \(\sqrt{x-1}=1\)
<=> \(x-1=1\)=> \(x=2\)( tm )
b) \(3x-\sqrt{49-14x+x^2}=15\)
<=> \(\sqrt{x^2-14x+49}=3x-15\)
<=> \(\sqrt{\left(x-7\right)^2}=3x-15\)
<=> \(\left|x-7\right|=3x-15\)(1)
Với x < 7
(1) <=> 7 - x = 3x - 15
<=> -x - 3x = -15 - 7
<=> -4x = -22
<=> x = 11/2 ( tm )
Với x ≥ 7
(1) <=> x - 7 = 3x - 15
<=> x - 3x = -15 + 7
<=> -2x = -8
<=> x = 4 ( ktm )
Vậy x = 11/2
a) \(ĐKXĐ:x\ge1\)
\(\sqrt{9x-9}-\frac{1}{2}\sqrt{4x-4}=2\)
\(\Leftrightarrow\sqrt{9.\left(x-1\right)}-\frac{1}{2}.\sqrt{4\left(x-1\right)}=2\)
\(\Leftrightarrow3\sqrt{x-1}-\frac{1}{2}.2\sqrt{x-1}=2\)
\(\Leftrightarrow3\sqrt{x-1}-\sqrt{x-1}=2\)
\(\Leftrightarrow2\sqrt{x-1}=2\)
\(\Leftrightarrow\sqrt{x-1}=1\)
\(\Leftrightarrow x-1=1\)\(\Leftrightarrow x=2\)( thỏa mãn ĐKXĐ )
Vậy phương trình có nghiệm là \(x=2\)
b) \(3x-\sqrt{49-14x+x^2}=15\)
\(\Leftrightarrow3x-\sqrt{\left(7-x\right)^2}=15\)
\(\Leftrightarrow3x-\left|7-x\right|=15\)
+) TH1: Nếu \(7-x< 0\)\(\Leftrightarrow x>7\)
thì \(3x-\left(x-7\right)=15\)
\(\Leftrightarrow3x-x+7=15\)\(\Leftrightarrow2x=8\)
\(\Leftrightarrow x=4\)( không thỏa mãn )
+) TH2: Nếu \(7-x\ge0\)\(\Leftrightarrow x\le7\)
thì \(3x-\left(7-x\right)=15\)
\(\Leftrightarrow3x-7+x=15\)
\(\Leftrightarrow4x=22\)\(\Leftrightarrow x=\frac{22}{4}\)( thỏa mãn ĐKXĐ )
Vậy nghiệm của phương trình là \(x=\frac{22}{4}\)
a,bạn viết thiếu đầu bài
b,<=>3x-2=4
<=>3x=6
<=>x=2
vậy...........................
c,=>\(5\left(2\sqrt{x}-19\right)=4-\sqrt{x}\)ĐKXĐ x>=0 x khác 16
<=>\(10\sqrt{x}-95-4+\sqrt{x}=0\)
<=>\(11\sqrt{x}-99=0\)
<=>\(11\sqrt{x}=99\)
<=>\(\sqrt{x}=9< =>x=81\)
vậy.............
k mk nha
#quynh tong ngoc ơi, câu a đề bài là vậy rồi nhé >< Mình viết đúng đấy bạn ạ
ĐKXĐ: \(\left\{{}\begin{matrix}3x^2-9x+1\ge0\\x\ge2\end{matrix}\right.\)
Khi đó:
\(\sqrt{3x^2-9x+1}=x-2\\ \Leftrightarrow3x^2-9x+1=\left(x-2\right)^2\\ \Leftrightarrow3x^2-9x+1=x^2-4x+4\\ \Leftrightarrow3x^2-9x+1-x^2+4x-4=0\\ \Leftrightarrow2x^2-5x-3=0\\ \Leftrightarrow2x^2+x-6x-3=0\\ \Leftrightarrow x\left(2x+1\right)-3\left(2x+1\right)=0\\ \Leftrightarrow\left(x-3\right)\left(2x+1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x-3=0\\2x+1=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=3\left(nhận\right)\\x=-\dfrac{1}{2}\left(loại\right)\end{matrix}\right.\)
Thử lại với x = 3 thì \(3x^2-9x+1=3.3^2-9.3+1=1>0\)
Vậy PT có nghiệm duy nhất \(S=\left\{3\right\}\)