Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
f) Ta có: \(\sqrt{16\left(x+1\right)}-\sqrt{9\left(x+1\right)}=4\)
\(\Leftrightarrow4\left|x+1\right|-3\left|x+1\right|=4\)
\(\Leftrightarrow\left|x+1\right|=4\)
\(\Leftrightarrow\left[{}\begin{matrix}x+1=4\\x+1=-4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-5\end{matrix}\right.\)
g) Ta có: \(\sqrt{9x+9}+\sqrt{4x+4}=\sqrt{x+1}\)
\(\Leftrightarrow5\sqrt{x+1}-\sqrt{x+1}=0\)
\(\Leftrightarrow x+1=0\)
hay x=-1
b: Ta có: \(\sqrt{9x^2-9}+\sqrt{4x^2-4}=\sqrt{16x^2-16}+2\)
\(\Leftrightarrow\sqrt{x^2-1}=2\)
\(\Leftrightarrow x^2-1=4\)
hay \(x\in\left\{\sqrt{5};-\sqrt{5}\right\}\)
a. \(x+\sqrt{x^2-4x+4}=\dfrac{1}{2}\)
<=> \(x+\sqrt{\left(x-2\right)^2}=\dfrac{1}{2}\)
<=> \(x+\left|x-2\right|=\dfrac{1}{2}\)
<=> \(\left[{}\begin{matrix}x+x-2=\dfrac{1}{2}\\x+\left[-\left(x-2\right)\right]=\dfrac{1}{2}\end{matrix}\right.\)
<=> \(\left[{}\begin{matrix}2x=\dfrac{5}{2}\\x-x+2=\dfrac{1}{2}\end{matrix}\right.\)
<=> \(\left[{}\begin{matrix}x=\dfrac{5}{4}\\0=\dfrac{-3}{2}\left(VLí\right)\end{matrix}\right.\)
Vậy nghiệm của PT là \(S=\left\{\dfrac{5}{4}\right\}\)
b. \(\sqrt{9x^2-9}+\sqrt{4x^2-4}=\sqrt{16x^2-16}+2\)
<=> \(\sqrt{9\left(x^2-1\right)}+\sqrt{4\left(x^2-1\right)}=\sqrt{16\left(x^2-1\right)}+2\)
<=> \(3\sqrt{x^2-1}+2\sqrt{x^2-1}-4\sqrt{x^2-1}=2\)
<=> \(\left(3+2-4\right)\sqrt{x^2-1}=2\)
<=> \(\sqrt{x^2-1}=2\)
<=> x2 - 1 = 4
<=> x2 = 5
<=> x = \(\sqrt{5}\)
a: ĐKXĐ: x>=3
Sửa đề: \(\sqrt{4x-12}-\sqrt{9x-27}+\sqrt{\dfrac{25x-75}{4}}-3=0\)
=>\(2\sqrt{x-3}-3\sqrt{x-3}+\dfrac{5}{2}\sqrt{x-3}-3=0\)
=>\(\dfrac{3}{2}\sqrt{x-3}=3\)
=>\(\sqrt{x-3}=2\)
=>x-3=4
=>x=7(nhận)
b: ĐKXĐ: x>=0
\(\dfrac{\sqrt{x}-2}{\sqrt{x}+1}< =-\dfrac{3}{4}\)
=>\(\dfrac{\sqrt{x}-2}{\sqrt{x}+1}+\dfrac{3}{4}< =0\)
=>\(\dfrac{4\sqrt{x}-8+3\sqrt{x}+3}{4\left(\sqrt{x}+1\right)}< =0\)
=>\(7\sqrt{x}-5< =0\)
=>\(\sqrt{x}< =\dfrac{5}{7}\)
=>0<=x<=25/49
c: ĐKXĐ: x>=5
\(\sqrt{9x-45}-14\sqrt{\dfrac{x-5}{49}}+\dfrac{1}{4}\sqrt{4x-20}=3\)
=>\(3\sqrt{x-5}-14\cdot\dfrac{\sqrt{x-5}}{7}+\dfrac{1}{4}\cdot2\cdot\sqrt{x-5}=3\)
=>\(\dfrac{3}{2}\sqrt{x-5}=3\)
=>\(\sqrt{x-5}=2\)
=>x-5=4
=>x=9(nhận)
`a)sqrt{x^2-6x+9}=2`
`<=>sqrt{(x-3)^2}=2`
`<=>|x-3|=2`
`**x-3=2`
`<=>x=5`
`**x-3=-2`
`<=>x=1`
Vậy `S={1,5}`
`b)sqrt{4x-20}+sqrt{x-5}-1/3sqrt{9x-45}=4`
đk:`x>=5`
`pt<=>2sqrt{x-5}+sqrt{x-5}-1/3*3*sqrt{x-5}=4`
`<=>2sqrt{x-5}=4`
`<=>sqrt{x-5}=2`
`<=>x-5=4<=>x=9`
Vậy `S={9}`
Lời giải:
a.
PT $\Leftrightarrow \sqrt{(x-3)^2}=2$
$\Leftrightarrow |x-3|=2$
$\Leftrightarrow x-3=\pm 2$
$\Leftrightarrow x=1$ hoặc $x=5$
b. ĐKXĐ: $x\geq 5$
PT $\Leftrightarrow \sqrt{4(x-5)}+\sqrt{x-5}-\frac{1}{3}\sqrt{9(x-5)}=4$
$\Leftrightarrow 2\sqrt{x-5}+\sqrt{x-5}-\sqrt{x-5}=4$
$\Leftrightarrow 2\sqrt{x-5}=4$
$\Leftrightarrow \sqrt{x-5}=2$
$\Leftrightarrow x=2^2+5=9$ (thỏa mãn)
a: ĐKXĐ: x>=-3/2
\(\sqrt{x^2+4}=\sqrt{2x+3}\)
=>\(x^2+4=2x+3\)
=>\(x^2-2x+1=0\)
=>\(\left(x-1\right)^2=0\)
=>x-1=0
=>x=1(nhận)
b: \(\sqrt{x^2-6x+9}=2x-1\)(ĐKXĐ: \(x\in R\))
=>\(\sqrt{\left(x-3\right)^2}=2x-1\)
=>\(\left\{{}\begin{matrix}\left(2x-1\right)^2=\left(x-3\right)^2\\x>=\dfrac{1}{2}\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}\left(2x-1-x+3\right)\left(2x-1+x-3\right)=0\\x>=\dfrac{1}{2}\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}\left(x+2\right)\left(3x-4\right)=0\\x>=\dfrac{1}{2}\end{matrix}\right.\)
=>x=4/3(nhận) hoặc x=-2(loại)
c:
Sửa đề: \(\sqrt{4x+12}=\sqrt{9x+27}-5\)
ĐKXĐ: \(x>=-3\)
\(\sqrt{4x+12}=\sqrt{9x+27}-5\)
=>\(2\sqrt{x+3}=3\sqrt{x+3}-5\)
=>\(-\sqrt{x+3}=-5\)
=>x+3=25
=>x=22(nhận)
d: ĐKXĐ: \(\left[{}\begin{matrix}x< =\dfrac{3-\sqrt{5}}{4}\\x>=\dfrac{3+\sqrt{5}}{4}\end{matrix}\right.\)
\(\sqrt{4x^2-6x+1}=\left|2x-5\right|\)
=>\(\sqrt{\left(4x^2-6x+1\right)}=\sqrt{4x^2-20x+25}\)
=>\(4x^2-6x+1=4x^2-20x+25\)
=>\(-6x+20x=25-1\)
=>\(14x=24\)
=>x=12/7(nhận)
a. ĐKXĐ: $x\geq 2$ hoặc $x=1$
PT $\Leftrightarrow \sqrt{(x-1)(x-2)}=\sqrt{x-1}$
$\Leftrightarrow \sqrt{x-1}(\sqrt{x-2}-1)=0$
\(\Leftrightarrow \left[\begin{matrix} \sqrt{x-1}=0\\ \sqrt{x-2}-1=0\end{matrix}\right.\Leftrightarrow \left[\begin{matrix} x=1\\ x=3\end{matrix}\right.\) (đều thỏa mãn)
b.
PT $\Leftrightarrow \sqrt{(x-2)^2}=\sqrt{(2x-3)^2}$
$\Leftrightarrow |x-2|=|2x-3|$
\(\Leftrightarrow \left[\begin{matrix} x-2=2x-3\\ x-2=3-2x\end{matrix}\right.\Leftrightarrow \left[\begin{matrix} x=1\\ x=\frac{5}{3}\end{matrix}\right.\)
c. ĐKXĐ: $x=2$ hoặc $x\geq 3$
PT $\Leftrightarrow \sqrt{(x-2)(x-3)}=\sqrt{x-2}$
$\Leftrightarrow \sqrt{x-2}(\sqrt{x-3}-1)=0$
\(\Leftrightarrow \left[\begin{matrix} \sqrt{x-2}=0\\ \sqrt{x-3}-1=0\end{matrix}\right.\Leftrightarrow \left[\begin{matrix} x=2\\ x=4\end{matrix}\right.\) (đều tm)
d.
PT $\Leftrightarrow \sqrt{(2x-1)^2}=\sqrt{(x-3)^2}$
$\Leftrightarrow |2x-1|=|x-3|$
\(\Leftrightarrow \left[\begin{matrix} 2x-1=x-3\\ 2x-1=3-x\end{matrix}\right.\Leftrightarrow \left[\begin{matrix} x=-2\\ x=\frac{4}{3}\end{matrix}\right.\)
d) \(\sqrt{x^2-6x+9}=2\Leftrightarrow\sqrt{\left(x-3\right)^2}=2\Leftrightarrow x-3=2\Leftrightarrow x=5\)
e) đk: \(x\ge2\)\(\sqrt{x^2-3x+2}=\sqrt{x-1}\Leftrightarrow\sqrt{\left(x-2\right)\left(x-1\right)}=\sqrt{x-1}\Leftrightarrow\sqrt{x-2}=1\Leftrightarrow x-2=1\Leftrightarrow x=3\)f) \(\sqrt{4x^2-4x+1}=\sqrt{x^2-6x+9}\Leftrightarrow\sqrt{\left(2x-1\right)^2}=\sqrt{\left(x-3\right)^2}\Leftrightarrow2x-1=x-3\Leftrightarrow x=-2\)
c: Ta có: \(\sqrt{x+4\sqrt{x-4}}=2\)
\(\Leftrightarrow\left|\sqrt{x-4}+2\right|=2\)
\(\Leftrightarrow x-4=0\)
hay x=4
Sửa lại câu c) đặt \(\sqrt{x}+1=\)t \(\Rightarrow\left[2\left(t+\dfrac{1}{2}\right)\right]\left(t-3\right)\)=7⇒\(\left\{{}\begin{matrix}t=3\\t=-\dfrac{1}{2}\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=4\\x=\dfrac{9}{4}\end{matrix}\right.\)
a) \(\left(\sqrt{4-3x}\right)^2=8^2\)\(\Leftrightarrow4-3x=64\Rightarrow x=-20\)
b) \(\sqrt{4x-8}+1=12\sqrt{\dfrac{x-2}{9}}\Leftrightarrow2\sqrt{x-2}+1\)\(=\left(12\sqrt{\left(x-2\right).\dfrac{1}{9}}\right)\)
\(\Leftrightarrow2t+1=12.\dfrac{1}{3}t\) (Đặt t = \(\sqrt{x-2}\))
\(\Rightarrow t=\dfrac{1}{2}\) \(\Rightarrow\sqrt{x-2}=\dfrac{1}{2}\)\(\Rightarrow x=\dfrac{9}{4}\)
c) pt\(\Leftrightarrow\left\{{}\begin{matrix}2\sqrt{x}+1=7\\\sqrt{x}-2=7\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\sqrt{x}=3\\\sqrt{x}=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=9\\x=4\end{matrix}\right.\)
a) ĐK : \(x\ge1\)
pt <=> \(\sqrt{3^2\left(x-1\right)}-\frac{1}{2}\sqrt{2^2\left(x-1\right)}=2\)
<=> \(\left|3\right|\sqrt{x-1}-\frac{1}{2}\cdot\left|2\right|\sqrt{x-1}=2\)
<=> \(3\sqrt{x-1}-1\sqrt{x-1}=2\)
<=> \(2\sqrt{x-1}=2\)
<=> \(\sqrt{x-1}=1\)
<=> \(x-1=1\)=> \(x=2\)( tm )
b) \(3x-\sqrt{49-14x+x^2}=15\)
<=> \(\sqrt{x^2-14x+49}=3x-15\)
<=> \(\sqrt{\left(x-7\right)^2}=3x-15\)
<=> \(\left|x-7\right|=3x-15\)(1)
Với x < 7
(1) <=> 7 - x = 3x - 15
<=> -x - 3x = -15 - 7
<=> -4x = -22
<=> x = 11/2 ( tm )
Với x ≥ 7
(1) <=> x - 7 = 3x - 15
<=> x - 3x = -15 + 7
<=> -2x = -8
<=> x = 4 ( ktm )
Vậy x = 11/2
a) \(ĐKXĐ:x\ge1\)
\(\sqrt{9x-9}-\frac{1}{2}\sqrt{4x-4}=2\)
\(\Leftrightarrow\sqrt{9.\left(x-1\right)}-\frac{1}{2}.\sqrt{4\left(x-1\right)}=2\)
\(\Leftrightarrow3\sqrt{x-1}-\frac{1}{2}.2\sqrt{x-1}=2\)
\(\Leftrightarrow3\sqrt{x-1}-\sqrt{x-1}=2\)
\(\Leftrightarrow2\sqrt{x-1}=2\)
\(\Leftrightarrow\sqrt{x-1}=1\)
\(\Leftrightarrow x-1=1\)\(\Leftrightarrow x=2\)( thỏa mãn ĐKXĐ )
Vậy phương trình có nghiệm là \(x=2\)
b) \(3x-\sqrt{49-14x+x^2}=15\)
\(\Leftrightarrow3x-\sqrt{\left(7-x\right)^2}=15\)
\(\Leftrightarrow3x-\left|7-x\right|=15\)
+) TH1: Nếu \(7-x< 0\)\(\Leftrightarrow x>7\)
thì \(3x-\left(x-7\right)=15\)
\(\Leftrightarrow3x-x+7=15\)\(\Leftrightarrow2x=8\)
\(\Leftrightarrow x=4\)( không thỏa mãn )
+) TH2: Nếu \(7-x\ge0\)\(\Leftrightarrow x\le7\)
thì \(3x-\left(7-x\right)=15\)
\(\Leftrightarrow3x-7+x=15\)
\(\Leftrightarrow4x=22\)\(\Leftrightarrow x=\frac{22}{4}\)( thỏa mãn ĐKXĐ )
Vậy nghiệm của phương trình là \(x=\frac{22}{4}\)