Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,\sqrt{x+1}=\sqrt{2-x}\)
\(\Rightarrow x+1=2-x\)
\(\Rightarrow2x=1\)
\(\Rightarrow x=\frac{1}{2}\)
a) \(ĐKXĐ:-1\le x\le2\)
Bình phương 2 vế ta có:
\(x+1=2-x\)\(\Leftrightarrow2x=1\)\(\Leftrightarrow x=\frac{1}{2}\)( đpcm )
Vậy \(x=\frac{1}{2}\)
b) \(ĐKXĐ:x\ge1\)
\(\sqrt{36x-36}-\sqrt{9x-9}-\sqrt{4x-4}=16-\sqrt{x-1}\)
\(\Leftrightarrow\sqrt{36\left(x-1\right)}-\sqrt{9\left(x-1\right)}-\sqrt{4\left(x-1\right)}+\sqrt{x-1}=16\)
\(\Leftrightarrow6\sqrt{x-1}-3\sqrt{x-1}-2\sqrt{x-1}+\sqrt{x-1}=16\)
\(\Leftrightarrow2\sqrt{x-1}=16\)\(\Leftrightarrow\sqrt{x-1}=8\)
\(\Leftrightarrow x-1=64\)\(\Leftrightarrow x=65\)( thỏa mãn ĐKXĐ )
Vậy \(x=65\)
c) \(ĐKXĐ:x\ge1\)
\(\sqrt{16x-16}-\sqrt{9x-9}+\sqrt{4x-4}+\sqrt{x-1}=8\)
\(\Leftrightarrow\sqrt{16\left(x-1\right)}-\sqrt{9\left(x-1\right)}+\sqrt{4\left(x-1\right)}+\sqrt{x-1}=8\)
\(\Leftrightarrow4\sqrt{x-1}-3\sqrt{x-1}+2\sqrt{x-1}+\sqrt{x-1}=8\)
\(\Leftrightarrow4\sqrt{x-1}=8\)\(\Leftrightarrow\sqrt{x-1}=2\)
\(\Leftrightarrow x-1=4\)\(\Leftrightarrow x=5\)( thỏa mãn ĐKXĐ )
Vậy \(x=5\)
\(\sqrt{16x+16}-\sqrt{9x+9}+\sqrt{4x+4}+\sqrt{x+1}=16\)
\(\Leftrightarrow4\sqrt{x+1}-3\sqrt{x+1}+2\sqrt{x+1}+\sqrt{x+1}=16\)
\(\Leftrightarrow4\sqrt{x+1}=16\)
\(\Leftrightarrow\sqrt{x+1}=4\)
<=> x + 1 = 16
<=> x = 15 (nhận)
~ ~ ~
\(\sqrt{4x+20}-3\sqrt{5+x}+\dfrac{4}{3}\sqrt{9x+45}=6\)
\(\Leftrightarrow2\sqrt{x+5}-3\sqrt{x+5}+4\sqrt{x+5}=6\)
\(\Leftrightarrow3\sqrt{x+5}=6\)
\(\Leftrightarrow\sqrt{x+5}=2\)
<=> x + 5 = 4
<=> x = - 1 (nhận)
a, \(\sqrt{9x+9}-4\sqrt{\dfrac{x+1}{4}}=5\) \(x\ge-1\)
\(\Leftrightarrow3\sqrt{x+1}-2\sqrt{x+1}=5\)
\(\Leftrightarrow x+1=25\Leftrightarrow x=24\)
2) "biểu thức"=\(\sqrt{x-5}-4\sqrt{x-5}-\sqrt{x-5}=12\Leftrightarrow4\sqrt{x-5}=12\Leftrightarrow\sqrt{x-5}=3\Leftrightarrow x=14\)
Kl: x=14
3) "biểu thức"=\(4\sqrt{x-1}-3\sqrt{x-1}+\sqrt{x-1}=5\Leftrightarrow2\sqrt{x-1}=5\Leftrightarrow\sqrt{x-1}=\dfrac{5}{2}\Leftrightarrow x=\left(\dfrac{5}{2}\right)^2+1=\dfrac{29}{4}\)
Kl: x=29/4
a/ ĐK: \(x \ge -1\). Đặt \(\sqrt{x+1}=a \ge 0\)
PT: \(\Leftrightarrow6a-3a-2a=5\)
\(\Leftrightarrow a=5\)
\(\Leftrightarrow x+1=15\Leftrightarrow x=24\) (nhận)
b,c: Hai ý này đều làm theo cách bình phương hoặc đưa về phương trình chứa dấu giá trị tuyệt đối được nhé.
b) Cách 1: ĐKXĐ: Tự tìm
\(\sqrt{x^{2}-4x+4}=2\Leftrightarrow x^{2}-4x+4=4\Leftrightarrow x(x-4)=0\)
\(\Leftrightarrow x=0\) hoặc \(x=4\) cả 2 cái này đều TMĐK
Cách 2: \((\sqrt{x^2-4x+4}=2)\)
\(\Leftrightarrow \sqrt{(x-2)^2}=2\)
\(\Leftrightarrow \mid x-2\mid=2\)
Với \(x\geq 2\) thì :
\(x-2=2 \Leftrightarrow x=4\) (nhận)
Với \(x<2\) thì
\(-x-2=2\Leftrightarrow x=0\) (nhận)
Vậy \(S={0;4}\)
c) Cách 1: \(\sqrt{x^{2}-6x+9}=x-2\Leftrightarrow \left\{\begin{matrix}x\geq 2 \\ x^{2}-6x+9=x^{2}-4x+4 \end{matrix}\right.\)
\(\Leftrightarrow \left\{\begin{matrix}x\geq 2 \\ x=\frac{5}{2} \end{matrix}\right.\)
Nghiệm TMĐK
Cách 2: \((\sqrt{x^2-6x+9}=x-2)\)
\(\Leftrightarrow \mid x-3\mid =x-2\)
Với \(x\geq 3\) thì
\(x-3=x-2\Leftrightarrow 0x=-1\) ( vô lý)
Với \(x<3\) thì
\(-x+3=x-2\Leftrightarrow -2x=-5 \Leftrightarrow x=\frac{5}{2}\)
Vậy \(S={\frac{5}{2}}\)
d) ĐKXĐ: Tự tìm
\(\sqrt{x^{2}+4}=\sqrt{2x+3}\Leftrightarrow x^{2}+4=2x+3\Leftrightarrow x^{2}-2x+1=0\Leftrightarrow (x-1)^{2}=0\)
\(\Leftrightarrow x=1\)
e) ĐKXĐ: \(x\geq \frac{3}{2}\)
\(\frac{\sqrt{2x-3}}{\sqrt{x-1}}=2\Leftrightarrow \frac{2x-3}{x-1}=4\Rightarrow 2x-3=4x-4\Leftrightarrow x=\frac{1}{2}\)
Nghiệm không TMĐK.
Phương trình vô nghiệm.
f) ĐKXĐ: \(x\geq \frac{-15}{2}\)
\(x+\sqrt{2x+15}=0\Leftrightarrow 2x+2\sqrt{2x+15}=0\Leftrightarrow 2x+15+2\sqrt{2x+15}+1-16=0\)
\(\Leftrightarrow (\sqrt{2x+15}+1)^{2}-4^{2}=0\Leftrightarrow (\sqrt{2x+15}+5)(\sqrt{2x+15}-3)=0\)
\(\Leftrightarrow \sqrt{2x+15}-3=0\Leftrightarrow \sqrt{2x+15}=3\Leftrightarrow 2x+15=9\Leftrightarrow x=-3\) (TMĐK)
Lời giải:
a)
ĐK: \(\forall x\in\mathbb{R}\)
Ta có: \(\sqrt{3x^2}-\sqrt{12}=0\)
\(\Rightarrow \sqrt{3x^2}=\sqrt{12}\)
\(\Rightarrow 3x^2=12\Rightarrow x^2=4\Rightarrow x=\pm 2\) (đều thỏa mãn)
b) ĐK: \(\forall x\in\mathbb{R}\)
\(\sqrt{(x-3)^2}=9\)
\(\Leftrightarrow |x-3|=9\Rightarrow \left[\begin{matrix} x-3=9\\ x-3=-9\end{matrix}\right.\Rightarrow \left[\begin{matrix} x=12\\ x=-6\end{matrix}\right.\)
c) ĐK: $x\in\mathbb{R}$
\(\sqrt{4x^2+4x+1}=6\)
\(\Leftrightarrow \sqrt{(2x)^2+2.2x+1}=6\)
\(\Leftrightarrow \sqrt{(2x+1)^2}=6\)
\(\Leftrightarrow |2x+1|=6\)
\(\Rightarrow \left[\begin{matrix} 2x+1=6\\ 2x+1=-6\end{matrix}\right.\Rightarrow \left[\begin{matrix} x=\frac{5}{2}\\ x=-\frac{7}{2}\end{matrix}\right.\)
d) ĐK: \(x\geq 1\)
\(\sqrt{16x-16}-\sqrt{9x-9}+\sqrt{4x-4}+\sqrt{x-1}=8\)
\(\Leftrightarrow \sqrt{16(x-1)}-\sqrt{9(x-1)}+\sqrt{4(x-1)}+\sqrt{x-1}=8\)
\(\Leftrightarrow 4\sqrt{x-1}-3\sqrt{x-1}+2\sqrt{x-1}+\sqrt{x-1}=8\)
\(\Leftrightarrow 4\sqrt{x-1}=8\Rightarrow \sqrt{x-1}=2\)
\(\Rightarrow x=2^2+1=5\) (thỏa mãn)
e)
ĐK: \(-4\leq x\leq \frac{1}{2}\)
\(\sqrt{1-x}+\sqrt{1-2x}=\sqrt{x+4}\)
\(\Leftrightarrow \sqrt{1-x}-1+\sqrt{1-2x}-1=\sqrt{x+4}-2\)
\(\Leftrightarrow \frac{(1-x)-1}{\sqrt{1-x}+1}+\frac{(1-2x)-1}{\sqrt{1-2x}+1}=\frac{(x+4)-2^2}{\sqrt{x+4}+2}\)
\(\Leftrightarrow \frac{-x}{\sqrt{1-x}+1}+\frac{-2x}{\sqrt{1-2x}+1}=\frac{x}{\sqrt{x+4}+2}\)
\(\Leftrightarrow x\left(\frac{1}{\sqrt{x+4}+2}+\frac{1}{\sqrt{1-x}+1}+\frac{2}{\sqrt{1-2x}+1}\right)=0\)
Dễ thấy biểu thức trong ngoặc lớn lớn hơn $0$
Do đó: \(x=0\) là nghiệm duy nhất của pt.
b: Ta có: \(\sqrt{9x^2-9}+\sqrt{4x^2-4}=\sqrt{16x^2-16}+2\)
\(\Leftrightarrow\sqrt{x^2-1}=2\)
\(\Leftrightarrow x^2-1=4\)
hay \(x\in\left\{\sqrt{5};-\sqrt{5}\right\}\)
a. \(x+\sqrt{x^2-4x+4}=\dfrac{1}{2}\)
<=> \(x+\sqrt{\left(x-2\right)^2}=\dfrac{1}{2}\)
<=> \(x+\left|x-2\right|=\dfrac{1}{2}\)
<=> \(\left[{}\begin{matrix}x+x-2=\dfrac{1}{2}\\x+\left[-\left(x-2\right)\right]=\dfrac{1}{2}\end{matrix}\right.\)
<=> \(\left[{}\begin{matrix}2x=\dfrac{5}{2}\\x-x+2=\dfrac{1}{2}\end{matrix}\right.\)
<=> \(\left[{}\begin{matrix}x=\dfrac{5}{4}\\0=\dfrac{-3}{2}\left(VLí\right)\end{matrix}\right.\)
Vậy nghiệm của PT là \(S=\left\{\dfrac{5}{4}\right\}\)
b. \(\sqrt{9x^2-9}+\sqrt{4x^2-4}=\sqrt{16x^2-16}+2\)
<=> \(\sqrt{9\left(x^2-1\right)}+\sqrt{4\left(x^2-1\right)}=\sqrt{16\left(x^2-1\right)}+2\)
<=> \(3\sqrt{x^2-1}+2\sqrt{x^2-1}-4\sqrt{x^2-1}=2\)
<=> \(\left(3+2-4\right)\sqrt{x^2-1}=2\)
<=> \(\sqrt{x^2-1}=2\)
<=> x2 - 1 = 4
<=> x2 = 5
<=> x = \(\sqrt{5}\)