\(\sqrt{18x-27}-\dfrac{1}{2}\sqrt{32x-48}+3\sqrt{\dfrac{16x-24}{2}}=1\)...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 12 2021

\(ĐK:x\ge\dfrac{3}{2}\\ PT\Leftrightarrow3\sqrt{2x-3}-2\sqrt{2x-3}+6\sqrt{2x-3}=1\\ \Leftrightarrow7\sqrt{2x-3}=1\\ \Leftrightarrow\sqrt{2x-3}=\dfrac{1}{7}\\ \Leftrightarrow2x-3=\dfrac{1}{49}\Leftrightarrow x=\dfrac{74}{49}\left(tm\right)\)

25 tháng 8 2018

a . \(3\sqrt{2x}-\dfrac{1}{3}\sqrt{18x}=\sqrt{24}\) ( ĐK : \(x\ge0\) )

\(\Leftrightarrow3\sqrt{2x}-\sqrt{2x}=\sqrt{24}\)

\(\Leftrightarrow2\sqrt{2x}=\sqrt{24}\)

\(\Leftrightarrow\sqrt{2x}=\sqrt{6}\)

\(\Leftrightarrow2x=6\)

\(\Leftrightarrow x=3\)

26 tháng 8 2018

làm mốt câu còn lại nha .

b) ta có : \(\sqrt{x^2+10\left|x\right|+25}=2\left|x\right|+1\Leftrightarrow\sqrt{\left(\left|x\right|+5\right)^2}=2\left|x\right|+1\)

\(\Leftrightarrow\left|x\right|+5=2\left|x\right|+1\Leftrightarrow\left|x\right|=4\Leftrightarrow x=\pm4\)

vậy \(x=\pm4\)

a: =>3 căn 2x-1/3x3 căn 2x=2 căn 6

=>2 căn 2x=2 căn 6

=>2x=6

=>x=3

b: =>||x|+5|=2|x|+1

\(\Leftrightarrow\left(2\left|x\right|+1-\left|x\right|-5\right)\left(2\left|x\right|+1+\left|x\right|+5\right)=0\)

=>|x|-4=0

=>x=4 hoặc x=-4

17 tháng 9 2020

\(ĐKXĐ:x\ge-1\)

Ta có : \(\sqrt{x+1}=32x^3+48x^2+18x+1\)

\(\Leftrightarrow\sqrt{x+1}-1=32x^3+48x^2+18x\)

\(\Leftrightarrow\frac{\left(x+1\right)-1^2}{\sqrt{x+1}+1}=2x.\left(16x^2+24x+9\right)\)

\(\Leftrightarrow\frac{x}{\sqrt{x+1}+1}-2x\left(4x+3\right)^2=0\)

\(\Leftrightarrow x.\left[\frac{1}{\sqrt{x+1}+1}-2.\left(4x+3\right)^2\right]=0\) (*)

Với mọi \(x\inĐKXD\) thì \(2.\left(4x+3\right)^2>\frac{1}{\sqrt{x+1}+1}\) nên từ (*) suy ra :

\(x=0\) ( Thỏa mãn ĐKXĐ )

Vậy pt có nghiệm duy nhất \(x=0\)

Bài 1: 

a: ĐKXĐ: \(\left\{{}\begin{matrix}x>0\\x\notin\left\{1;4\right\}\end{matrix}\right.\)

b: \(P=\dfrac{x-1-4\sqrt{x}+\sqrt{x}+1}{x-1}\cdot\dfrac{x-1}{x-2\sqrt{x}}\)

\(=\dfrac{x-3\sqrt{x}}{x-2\sqrt{x}}=\dfrac{\sqrt{x}-3}{\sqrt{x}-2}\)

c: Để \(P=\dfrac{1}{2}\) thì \(2\sqrt{x}-6=\sqrt{x}-2\)

hay x=16

Bài 1: Thực hiện phép tính a) \(\dfrac{1}{2}\sqrt{48}-\sqrt{32}-\sqrt{75}\)\(-\dfrac{1}{5}\sqrt{50}\) b) \(\dfrac{3+\sqrt{3}}{3-\sqrt{3}}+\dfrac{3-\sqrt{3}}{3+\sqrt{3}}\) c) \(4\sqrt{\dfrac{3}{2}}-\dfrac{5}{2}\sqrt{24}+\dfrac{1}{2}\sqrt{50}\) d) \(\left(2\sqrt{5}+5\sqrt{2}\right).\sqrt{5}-\sqrt{250}\) Bài 2: Rút gọn biểu thức sau \(\sqrt{9a}-\sqrt{16a}+\sqrt{49a}\) với \(a\ge0\) Bài 3: Cho biểu thức...
Đọc tiếp

Bài 1: Thực hiện phép tính

a) \(\dfrac{1}{2}\sqrt{48}-\sqrt{32}-\sqrt{75}\)\(-\dfrac{1}{5}\sqrt{50}\)

b) \(\dfrac{3+\sqrt{3}}{3-\sqrt{3}}+\dfrac{3-\sqrt{3}}{3+\sqrt{3}}\)

c) \(4\sqrt{\dfrac{3}{2}}-\dfrac{5}{2}\sqrt{24}+\dfrac{1}{2}\sqrt{50}\)

d) \(\left(2\sqrt{5}+5\sqrt{2}\right).\sqrt{5}-\sqrt{250}\)

Bài 2: Rút gọn biểu thức sau

\(\sqrt{9a}-\sqrt{16a}+\sqrt{49a}\) với \(a\ge0\)

Bài 3: Cho biểu thức sau

A=\(\left(\dfrac{\sqrt{x}}{\sqrt{x}-a}+\dfrac{\sqrt{x}}{\sqrt{x}+2}\right).\dfrac{4-x}{2\sqrt{x}}\)với \(x>0\)\(x\ne4\)

a) Rút gọn A b) Tìm x để A=-3

Bài 4: Rút gọn biểu thức sau

A=\(\left(\dfrac{1}{\sqrt{x}-1}+\dfrac{1}{1+\sqrt{x}}\right):\dfrac{1}{x-1}\) với \(x\ge0\)\(x\ne1\)

Bài 5: Cho biểu thức

C= \(\left(\dfrac{2+\sqrt{a}}{2-\sqrt{a}}-\dfrac{2-\sqrt{a}}{2+\sqrt{a}}-\dfrac{4a}{a-4}\right):\left(\dfrac{2}{2-\sqrt{a}}-\dfrac{\sqrt{a}+3}{2\sqrt{a}-a}\right)\)

a) Rút gọn C b) Timg giá trị của a để C>0 c) Tìm giá trị của a để C=-1

Bài 6: Giải phương trình

a) \(2\sqrt{3}-\sqrt{4+x^2}=0\\\)

b) \(\sqrt{16x+16}-\sqrt{9x+9}=1\)

c) \(3\sqrt{2x}+5\sqrt{8x}-20-\sqrt{18x}=0\)

d) \(\sqrt{4\left(x+2\right)^2}=8\)

1
29 tháng 11 2022

Bài 6:

a: \(\Leftrightarrow\sqrt{x^2+4}=\sqrt{12}\)

=>x^2+4=12

=>x^2=8

=>\(x=\pm2\sqrt{2}\)

b: \(\Leftrightarrow4\sqrt{x+1}-3\sqrt{x+1}=1\)

=>x+1=1

=>x=0

c: \(\Leftrightarrow3\sqrt{2x}+10\sqrt{2x}-3\sqrt{2x}-20=0\)

=>\(\sqrt{2x}=2\)

=>2x=4

=>x=2

d: \(\Leftrightarrow2\left|x+2\right|=8\)

=>x+2=4 hoặcx+2=-4

=>x=-6 hoặc x=2

6 tháng 10 2018

\(\Leftrightarrow\sqrt{3-x}+\dfrac{5}{4}\sqrt{16\left(3-x\right)}-\sqrt{9\left(3-x\right)}=6\)

\(ĐKXĐ:x\le3\)

\(\Leftrightarrow\sqrt{3-x}+5\sqrt{3-x}-3\sqrt{3-x}=0\)

\(\Leftrightarrow3\sqrt{3-x}=6\)

\(\Leftrightarrow\sqrt{3-x}=2\)

\(\Leftrightarrow x=-1\)

6 tháng 10 2018

\(\sqrt{3-x}+\dfrac{5}{4}\sqrt{48-16x}-\sqrt{27-9x}=6\) (ĐKXĐ :x\(\ge\)3) \(\Leftrightarrow\sqrt{3-x}+\dfrac{5}{4}\sqrt{16\left(3-x\right)}-\sqrt{9\left(3-x\right)}=6\Leftrightarrow\sqrt{3-x}+\dfrac{5}{4}.4\sqrt{3-x}-3\sqrt{3-x}=6\Leftrightarrow\sqrt{3-x}+5\sqrt{3-x}-3\sqrt{3-x}=6\Leftrightarrow3\sqrt{3-x}=6\Leftrightarrow\sqrt{3-x}=2\Leftrightarrow\left(\sqrt{3-x}\right)^2=4\Leftrightarrow3-x=4\Leftrightarrow x=-1\)(loại vì không thỏa mãn ĐKXĐ)

Vậy phương trình đã cho có tập nghiệm là \(S=\left\{\varnothing\right\}\)

26 tháng 7 2018

\(a,2\sqrt{\dfrac{27}{4}}-\sqrt{\dfrac{48}{9}}-\dfrac{2}{5}.\sqrt{\dfrac{75}{16}}\)

\(\Leftrightarrow2.\dfrac{\sqrt{27}}{2}-\sqrt{\dfrac{48}{3}}-\dfrac{2}{5}.\dfrac{\sqrt{75}}{4}\)

\(\Leftrightarrow\sqrt{27}-\dfrac{4\sqrt{3}}{3}-\dfrac{1}{5}.\dfrac{5\sqrt{3}}{2}\)

\(\Leftrightarrow3\sqrt{3}-\dfrac{4\sqrt{3}}{3}-\dfrac{\sqrt{3}}{2}\)

\(\Leftrightarrow\dfrac{7\sqrt{3}}{6}\)

26 tháng 7 2018

\(b,\left(1+\dfrac{5-\sqrt{5}}{1-\sqrt{5}}\right).\left(\dfrac{5+\sqrt{5}}{1+\sqrt{5}}+1\right)\)

\(\Leftrightarrow\)\(\left[1+\dfrac{\left(5-\sqrt{5}\right)\left(1+\sqrt{5}\right)}{-4}\right].\left[\dfrac{\left(5+\sqrt{5}\right).\left(1-\sqrt{5}\right)}{-4}+1\right]\)

\(\Leftrightarrow\)\(\left(1+\dfrac{5+5\sqrt{5}-\sqrt{5}-5}{-4}\right).\left(\dfrac{5-5\sqrt{5}+\sqrt{5}-5}{-4}+1\right)\)

\(\Leftrightarrow\)\(\left(1+\dfrac{4\sqrt{5}}{-4}\right)\left(\dfrac{-4\sqrt{5}}{-4}+1\right)\)

\(\Leftrightarrow\left(1-\sqrt{5}\right)\left(\sqrt{5}+1\right)\)

\(\Leftrightarrow\left(1-\sqrt{5}\right).\left(1+\sqrt{5}\right)\)

<=> 1-5

=-4

1: \(=\sqrt{5}-\dfrac{\sqrt{5}}{2}=\dfrac{\sqrt{5}}{2}\)

2: \(=\dfrac{4+2\sqrt{3}+4-2\sqrt{3}}{2}=\dfrac{8}{2}=4\)

4: \(=\dfrac{-3+5\sqrt{3}}{11}+\dfrac{3+5\sqrt{3}}{11}=\dfrac{10\sqrt{3}}{11}\)

16 tháng 2 2019

ĐKXĐ: \(x>-\frac{3}{2}\)

\(x+1+\sqrt{2x+3}=\frac{8x^2+18x+11}{2\sqrt{2x+3}}\left(1\right)\)

Đặt \(x+1=a>-\frac{1}{2};\sqrt{2x+3}=b>0\)

\(\Rightarrow8x^2+18x+11=a^2+b^2\)

Khi đó, phương trình (1) trở thành:

\(a+b=\frac{a^2+b^2}{2b}\Leftrightarrow2ab+2b^2=a^2+b^2\)

\(\Leftrightarrow8a^2-2ab-b^2=0\Leftrightarrow\left(2a-b\right)\left(4a+b\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}2a=b\\b=-4a\end{cases}}\)

Với từng trường hợp, bạn thay a,b theo như cách đặt, sau đó bình phương lên và sử dụng công thức nghiệm hoặc công thức nghiệm thu gọn để1 lấy nghiệm và so sánh với điều kiện bài toán nhé!

HỌC TỐT!^_^