K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
20 tháng 1

Nhận thấy \(t=0\) ko phải nghiệm

Với \(t\ne0\) pt tương đương:

\(\dfrac{3}{t+3+\dfrac{2}{t}}+\dfrac{2}{t+1+\dfrac{2}{t}}=1\)

Đặt \(t+\dfrac{1}{t}+1=x\Rightarrow t+\dfrac{2}{t}+3=x+2\)

Pt trở thành:

\(\dfrac{3}{x+2}+\dfrac{2}{x}=1\)

\(\Rightarrow3x+2\left(x+2\right)=x\left(x+2\right)\)

\(\Leftrightarrow x^2-3x-4=0\Rightarrow\left[{}\begin{matrix}x=-1\\x=4\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}t+\dfrac{2}{t}+1=-1\\t+\dfrac{2}{t}+1=4\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}t^2+2t+2=0\left(vn\right)\\t^2-3t+2=0\end{matrix}\right.\)

\(\Rightarrow t=\left\{1;2\right\}\)

20 tháng 1

Em cảm ơn ạ :33

7 tháng 2 2022

A 3x-4x=-9-3

    -x=-12

     x=12

B 3.2x -5x +1=5+0.2x

  3.2x-5x-0.2x=5-1

  -2x=4

 x=-2

C 1.5-x-2=-3x-0.3

  -x+3x=-0.3-1.5+2

  2x =0.2

  x=0.1

E 2/3-1/2x-1=-x+1

  -1/2x+x=1+1-2/3

  1/2x=4/3

  x=8/3

F 3t-4+13+2t+4-3t

  =3t+2t-3t-4+13+4

  =2t+13

27 tháng 5 2020

\(\frac{\left(2t+1\right)^2}{4}+\frac{\left(1-t\right)3t}{3}< \frac{5t}{4}+1\)

\(\Leftrightarrow3\left(2t+1\right)\left(2t+1\right)+12t\left(1-t\right)< 15t+12\)

\(\Leftrightarrow12t^2+12t+3+12t-12t^2< 15t+12\)

\(\Leftrightarrow9t< 9\)

\(\Leftrightarrow t< 1\)

Vậy : ..............

18 tháng 2 2021

sửa:      a) (t+1) / (3t^2-t+1) - (2t^2-3) / 3                 b) I2-3tI / (2t^2+4t+5) + (t-1) / 2

18 tháng 3 2017

Thu gọn A = 5.

7 tháng 11 2017

Lần lượt thay các giá trị của t vào hai vế của phương trình ta được:

- Tại t = -1 :

(t + 2)2 = (-1 + 2)2 = 1

3t + 4 = 3(-1) + 4 = 1

⇒ t = -1 là nghiệm của phương trình (t + 2)2 = 3t + 4.

- Tại t = 0

(t + 2)2 = (0 + 2)2 = 4

3t + 4 = 3.0 + 4 = 4

⇒ t = 0 là nghiệm của phương trình (t + 2)2 = 3t + 4.

- Tại t = 1

(t + 2)2 = (1 + 2)2 = 9

3t + 4 = 3.1 + 4 = 7

⇒ t = 1 không là nghiệm của phương trình (t + 2)2 = 3t + 4.

24 tháng 7 2018

A = 3t^2 -t+ 6t -2 - 3t^2 - 3t -2t + 7

   = (3t^2 -3t^2) +( 6t-t-3t-2t) +(7-2)

   = 0+0+5 =5

Vậy A ko phụ thuộc vào giá trị của biến.

Những bài kiểu này bạn cứ nhân ra mà nếu kết quả ra 1 số thực thi ko phụ thuộc vào biến.

Chúc bạn học tốt.

   

1 tháng 4 2020

a, - Để biểu thức trên được xác định thì : \(x^2+x+1\ne0\)

\(x^2+x+1=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}>0\)

Vậy biểu thức luôn được xác định với mọi x .

b, - Để biểu thức trên được xác định thì : \(4x^2+2x+3\ne0\)

\(4x^2+2x+3=\) \(x^2+\frac{x}{2}+\frac{3}{4}=\left(x+\frac{1}{4}\right)^2+\frac{11}{16}>0\)

Vậy biểu thức luôn được xác định với mọi x .

d, - Để biểu thức trên có nghĩa thì : \(3t^2-t+1\ne0\)

\(3t^2-t+1=3\left(t^2-\frac{t}{3}+\frac{1}{3}\right)=3\left(\left(t-\frac{1}{6}\right)^2+\frac{11}{36}\right)>0\)

Vậy biểu thức luôn được xác định với mọi x .

1 tháng 4 2020

tức là cứ vô nghiệm là xác định được à @Nguyễn Ngọc Lộc