K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) \(\left(2x^2+x-6\right)^2+3\left(2x^2+x-3\right)-9=0\)

\(\Leftrightarrow\left(2x^2+x-6\right)^2+3\left(2x^2+x-6\right)=0\)

\(\Leftrightarrow\left(2x^2+x-6\right)\left(2x^2+x-6+3\right)=0\)

\(\Leftrightarrow\left(2x^2+x-6\right)\left(2x^2+x-3\right)=0\)

\(\Leftrightarrow\left(x+2\right)\left(2x-3\right)\left(x-1\right)\left(2x+3\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x+2=0\\2x-3=0\end{cases}}\)hoặc \(\orbr{\begin{cases}x-1=0\\2x+3=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=-2\\x=\frac{3}{2}\end{cases}}\)hoặc \(\orbr{\begin{cases}x=1\\x-\frac{3}{2}\end{cases}}\)

Vậy tập nghiệm của PT là \(S=\left\{-2;\frac{3}{2};1;-\frac{3}{2}\right\}\)

b) \(2y^4-9y^3+14y^2-9y+2=0\)

\(\Leftrightarrow\left(y-2\right)\left(y-1\right)^2\left(2y-1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}y-2=0\\\left(y-1\right)^2=0\end{cases}}\)hoặc \(2y-1=0\)

\(\Leftrightarrow\orbr{\begin{cases}y=2\\y-1=0\end{cases}}\)hoặc \(2y=1\)

\(\Leftrightarrow\orbr{\begin{cases}y=2\\y=1\end{cases}}\)hoặc \(y=\frac{1}{2}\)

Vậy tập nghiệm của PT là \(S=\left\{2;1;\frac{1}{2}\right\}\)

24 tháng 2 2021

a) Đặt 2x2 + x - 6 = a

pt <=> a2 + 3( a + 3 ) - 9 = 0

<=> a2 + 3a + 9 - 9 = 0

<=> a( a + 3 ) = 0

<=> ( 2x2 + x - 6 )( 2x2 + x - 6 + 3 ) = 0

<=> ( 2x2 + x - 6 )( 2x2 + x - 3 ) = 0

<=> ( 2x2 + 4x - 3x - 6 )( 2x2 - 2x + 3x - 3 ) = 0

<=> [ 2x( x + 2 ) - 3( x + 2 ) ][ 2x( x - 1 ) + 3( x - 1 ) ] = 0

<=> ( x + 2 )( 2x - 3 )( x - 1 )( 2x + 3 ) = 0

<=> x = -2 hoặc x = 1 hoặc x = ±3/2

Vậy S = { -2 ; 1 ; ±3/2 }

b) 2y4 - 9y3 + 14y2 - 9y + 2 = 0

<=> 2y4 - 4y3 - 5y3 + 10y2 + 4y2 - 8y - y + 2 = 0

<=> 2y3( y - 2 ) - 5y2( y - 2 ) + 4y( y - 2 ) - ( y - 2 ) = 0

<=> ( y - 2 )( 2y3 - 5y2 + 4y - 1 ) = 0

<=> ( y - 2 )( 2y3 - 2y2 - 3y2 + 3y + y - 1 ) = 0

<=> ( y - 2 )[ 2y2( y - 1 ) - 3y( y - 1 ) + ( y - 1 ) ] = 0

<=> ( y - 2 )( y - 1 )( 2y2 - 3y + 1 ) = 0

<=> ( y - 2 )( y - 1 )( 2y2 - 2y - y + 1 ) = 0

<=> ( y - 2 )( y - 1 )[ 2y( y - 1 ) - ( y - 1 ) ] = 0

<=> ( y - 2 )( y - 1 )2( 2y - 1 ) = 0

<=> y = 2 hoặc y = 1 hoặc y = 1/2

Vậy S = { 2 ; 1 ; 1/2 }

Bài 2:

\(A=\dfrac{2}{-x^2-2x-2}=\dfrac{-2\left(-x^2-2x-2\right)-2x^2-4x-2}{-x^2-2x-2}\) \(=-2+\dfrac{2\left(x+1\right)^2}{-x^2-2x-2}\ge-2\)

  Dấu bằng xảy ra \(\Leftrightarrow x+1=0\Leftrightarrow x=-1\)

  Vậy \(A_{Min}=-2\) khi \(x=-1\)

Bài 1:

a) Ta có: \(2x^2-6=0\)

\(\Leftrightarrow2x^2=6\)

\(\Leftrightarrow x^2=3\)

hay \(x\in\left\{\sqrt{3};-\sqrt{3}\right\}\)

Vậy: \(S=\left\{\sqrt{3};-\sqrt{3}\right\}\)

14 tháng 3 2021

chỗ dấu suy ra thứ 2 e ko hiểu lắm ạ 

 

a: =>2x^2+9x-6x-27=0

=>x(2x+9)-3(2x+9)=0

=>(2x+9)(x-3)=0

=>x=3 hoặc x=-9/2

b: =>-10x^2+6x-5x+3=0

=>-2x(5x-3)-(5x-3)=0

=>(5x-3)(-2x-1)=0

=>x=-1/2 hoặc x=5/3

c: =>-x^3+2x^2-x^2+4=0

=>-x^2(x-2)-(x-2)(x+2)=0

=>(x-2)(-x^2-x-2)=0

=>x-2=0

=>x=2

d: =>(x^3+8)-4x(x+2)=0

=>(x+2)(x^2-2x+4)-4x(x+2)=0

=>(x+2)(x^2-6x+4)=0

=>x=-2 hoặc \(x=3\pm\sqrt{5}\)

a: =>7-x=0

hay x=7

b: \(\Leftrightarrow\left(x-\sqrt{2}\right)\left(x+\sqrt{2}\right)\left(x+5\right)\left(3x-8\right)=0\)

hay \(x\in\left\{\sqrt{2};-\sqrt{2};-5;\dfrac{8}{3}\right\}\)

a: =>-x+7=0

hay x=7

b: \(\Leftrightarrow\left(x-\sqrt{2}\right)\left(x+\sqrt{2}\right)\left(x+5\right)\left(3x-8\right)=0\)

hay \(x\in\left\{\sqrt{2};-\sqrt{2};-5;\dfrac{8}{3}\right\}\)

a: \(x\left(x-1\right)+2x^2-2=0\)

=>\(x\left(x-1\right)+2\left(x-1\right)\left(x+1\right)=0\)

=>\(\left(x-1\right)\left(x+2x+2\right)=0\)

=>(x-1)(3x+2)=0

=>\(\left[{}\begin{matrix}x=1\\x=-\dfrac{2}{3}\end{matrix}\right.\)

b: \(9x^2-1=\left(3x+1\right)\left(2x-3\right)\)

=>\(\left(3x+1\right)\left(3x-1\right)-\left(3x+1\right)\left(2x-3\right)=0\)

=>\(\left(3x+1\right)\left(3x-1-2x+3\right)=0\)

=>(3x+1)(x+2)=0

=>\(\left[{}\begin{matrix}x=-\dfrac{1}{3}\\x=-2\end{matrix}\right.\)

26 tháng 1

a: x(x−1)+2x2−2=0

=>x(x−1)+2(x−1)(x+1)=0

=>(x−1)(x+2x+2)=0

=>(x-1)(3x+2)=0

=>⎡⎣x=1x=−23

b: 9x2−1=(3x+1)(2x−3)9

=>(3x+1)(3x−1)−(3x+1)(2x−3)=0

=>(3x+1)(3x−1−2x+3)=0

=>(3x+1)(x+2)=0

=>⎡⎣x=−13x=−2

26 tháng 4 2022

a)2.(x+3)-(3+x).(1`+2x)=0\(\Leftrightarrow\)2x+6-3-6x-x-2x\(^2\)=0

\(\Leftrightarrow\)-2x\(^2\)-5x+3=0\(\Leftrightarrow\)\(\left\{{}\begin{matrix}x+3=0\\1-2x=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-3\\x=\dfrac{1}{2}\end{matrix}\right.\)

Vậy PT đã cho có tập nghiệm S=\(\left\{-3;\dfrac{1}{2}\right\}\)

b)x\(^2\)-4x+4=9\(\Leftrightarrow\)x\(^2\)-4x+4-9=0\(\Leftrightarrow\)x\(^2\)-4x-5=0

\(\Leftrightarrow\left\{{}\begin{matrix}5-x=0\\1+x=0\end{matrix}\right.\left\{{}\begin{matrix}x=5\\x=-1\end{matrix}\right.\)

Vậy PT đã cho có tập nghiệm S=\(\left\{-1;5\right\}\)

26 tháng 4 2022

\(a,\Leftrightarrow\left(x+3\right)\left(2-1-2x\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+3=0\\1-2x=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-3\\-2x=-1\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=\dfrac{1}{2}\end{matrix}\right.\)

\(b,\Leftrightarrow\left(x-2\right)^2=9\)

\(\Leftrightarrow\left[{}\begin{matrix}x-2=3\\x-2=-3\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=5\\x=-1\end{matrix}\right.\)

26 tháng 4 2022

a) \(2\left(x+3\right)-\left(x+3\right)\left(1+2x\right)=0\)

\(\Leftrightarrow\left(x+3\right)\left(2-1-2x\right)=0\)

\(\Leftrightarrow\left(x+3\right)\left(1-2x\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+3=0\\1-2x=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=\dfrac{1}{2}\end{matrix}\right.\)

-Vậy \(S=\left\{-3;\dfrac{1}{2}\right\}\)

b) \(x^2-4x+4=9\)

\(\Leftrightarrow\left(x-2\right)^2-9=0\)

\(\Leftrightarrow\left(x-2-3\right)\left(x-2+3\right)=0\)
\(\Leftrightarrow\left(x-5\right)\left(x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-5=0\\x+1=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=5\\x=-1\end{matrix}\right.\)
-Vậy \(S=\left\{5;-1\right\}\)

8 tháng 2 2023

bạn tách từng bài ra bn

8 tháng 2 2023

cùng 1 bài mà