Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
a. ĐKXĐ: $x\geq 4$
PT $\Leftrightarrow \sqrt{(x-4)+4\sqrt{x-4}+4}=2$
$\Leftrightarrow \sqrt{(\sqrt{x-4}+2)^2}=2$
$\Leftrightarrow |\sqrt{x-4}+2|=2$
$\Leftrightarrow \sqrt{x-4}+2=2$
$\Leftrightarrow \sqrt{x-4}=0$
$\Leftrightarrow x=4$ (tm)
b. ĐKXĐ: $x\in\mathbb{R}$
PT $\Leftrightarrow \sqrt{(2x-1)^2}=\sqrt{(x-3)^2}$
$\Leftrightarrow |2x-1|=|x-3|$
\(\Rightarrow \left[\begin{matrix} 2x-1=x-3\\ 2x-1=3-x\end{matrix}\right.\Rightarrow \left[\begin{matrix} x=-2\\ x=\frac{4}{3}\end{matrix}\right.\)
c.
PT \(\Rightarrow \left\{\begin{matrix} 2x-1\geq 0\\ 2x^2-2x+1=(2x-1)^2\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x\geq \frac{1}{2}\\ 2x^2-2x=0\end{matrix}\right.\)
\(\Leftrightarrow \left\{\begin{matrix} x\geq \frac{1}{2}\\ 2x(x-1)=0\end{matrix}\right.\Rightarrow x=1\)
\(a,ĐK:\left\{{}\begin{matrix}x\ge5\\x\le3\end{matrix}\right.\Leftrightarrow x\in\varnothing\)
Vậy pt vô nghiệm
\(b,ĐK:x\le\dfrac{2}{5}\\ PT\Leftrightarrow4-5x=2-5x\\ \Leftrightarrow0x=2\Leftrightarrow x\in\varnothing\)
\(c,ĐK:x\ge-\dfrac{3}{2}\\ PT\Leftrightarrow x^2+4x+5-2\sqrt{2x+3}=0\\ \Leftrightarrow\left(2x+3-2\sqrt{2x+3}+1\right)+\left(x^2+2x+1\right)=0\\ \Leftrightarrow\left(\sqrt{2x+3}-1\right)^2+\left(x+1\right)^2=0\\ \Leftrightarrow\left\{{}\begin{matrix}2x+3=1\\x+1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-1\\x=-1\end{matrix}\right.\Leftrightarrow x=-1\left(tm\right)\\ d,PT\Leftrightarrow\left|x-1\right|=\left|2x-1\right|\Leftrightarrow\left[{}\begin{matrix}x-1=2x-1\\x-1=1-2x\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{2}{3}\end{matrix}\right.\)
a, ĐKXĐ : \(x\ge\dfrac{1}{2}\)
PT <=> 2x - 1 = 5
<=> x = 3 ( TM )
Vậy ...
b, ĐKXĐ : \(x\ge5\)
PT <=> x - 5 = 9
<=> x = 14 ( TM )
Vậy ...
c, PT <=> \(\left|2x+1\right|=6\)
\(\Leftrightarrow\left[{}\begin{matrix}2x+1=6\\2x+1=-6\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5}{2}\\x=-\dfrac{7}{2}\end{matrix}\right.\)
Vậy ...
d, PT<=> \(\left|x-3\right|=3-x\)
\(\Leftrightarrow\left[{}\begin{matrix}x-3=x-3\\x-3=3-x\end{matrix}\right.\)
Vậy phương trình có vô số nghiệm với mọi x \(x\le3\)
e, ĐKXĐ : \(-\dfrac{5}{2}\le x\le1\)
PT <=> 2x + 5 = 1 - x
<=> 3x = -4
<=> \(x=-\dfrac{4}{3}\left(TM\right)\)
Vậy ...
f ĐKXĐ : \(\left[{}\begin{matrix}x\le0\\1\le x\le3\end{matrix}\right.\)
PT <=> \(x^2-x=3-x\)
\(\Leftrightarrow x=\pm\sqrt{3}\) ( TM )
Vậy ...
a) \(\sqrt{2x-1}=\sqrt{5}\) (x \(\ge\dfrac{1}{2}\))
<=> 2x - 1 = 5
<=> x = 3 (tmđk)
Vậy S = \(\left\{3\right\}\)
b) \(\sqrt{x-5}=3\) (x\(\ge5\))
<=> x - 5 = 9
<=> x = 4 (ko tmđk)
Vậy x \(\in\varnothing\)
c) \(\sqrt{4x^2+4x+1}=6\) (x \(\in R\))
<=> \(\sqrt{\left(2x+1\right)^2}=6\)
<=> |2x + 1| = 6
<=> \(\left[{}\begin{matrix}\text{2x + 1=6}\\\text{2x + 1}=-6\end{matrix}\right.< =>\left[{}\begin{matrix}x=\dfrac{5}{2}\\x=\dfrac{-7}{2}\end{matrix}\right.\)(tmđk)
Vậy S = \(\left\{\dfrac{5}{2};\dfrac{-7}{2}\right\}\)
a:Ta có: \(\sqrt{2x+9}=\sqrt{5-4x}\)
\(\Leftrightarrow2x+9=5-4x\)
\(\Leftrightarrow6x=-4\)
hay \(x=-\dfrac{2}{3}\left(nhận\right)\)
b: Ta có: \(\sqrt{2x-1}=\sqrt{x-1}\)
\(\Leftrightarrow2x-1=x-1\)
hay x=0(loại)
c: Ta có: \(\sqrt{x^2+3x+1}=\sqrt{x+1}\)
\(\Leftrightarrow x^2+3x=x\)
\(\Leftrightarrow x\left(x+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\left(loại\right)\\x=-2\left(loại\right)\end{matrix}\right.\)
a. \(\sqrt{2x+9}=\sqrt{5-4x}\)
<=> 2x + 9 = 5 - 4x
<=> 2x + 4x = 5 - 9
<=> 6x = -4
<=> x = \(\dfrac{-4}{6}=\dfrac{-2}{3}\)
a: Ta có: \(\sqrt{1-x^2}=x-1\)
\(\Leftrightarrow1-x^2=x-1\)
\(\Leftrightarrow1-x^2-x+1=0\)
\(\Leftrightarrow x^2+x-2=0\)
\(\Leftrightarrow\left(x+2\right)\left(x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-2\left(loại\right)\\x=1\left(nhận\right)\end{matrix}\right.\)
b: Ta có: \(\sqrt{x^2+4x+4}=x-2\)
\(\Leftrightarrow\left|x+2\right|=x-2\)
\(\Leftrightarrow\left[{}\begin{matrix}x+2=x-2\left(x\ge-2\right)\\x+2=2-x\left(x< -2\right)\end{matrix}\right.\Leftrightarrow2x=0\)
hay x=0(loại)
a:
ĐKXĐ: \(x>=-2\)
\(1+\sqrt{x^2+7x+10}=\sqrt{x+5}+\sqrt{x+2}\)
=>\(1+\sqrt{\left(x+2\right)\left(x+5\right)}=\sqrt{x+5}+\sqrt{x+2}\)
Đặt \(\sqrt{x+5}=a;\sqrt{x+2}=b\)(ĐK: a>0 và b>0)
Phương trình sẽ trở thành:
1+ab=a+b
=>ab-a-b+1=0
=>a(b-1)-(b-1)=0
=>(b-1)(a-1)=0
=>\(\left\{{}\begin{matrix}a-1=0\\b-1=0\end{matrix}\right.\Leftrightarrow a=b=1\)
=>\(\left\{{}\begin{matrix}x+5=1\\x+2=1\end{matrix}\right.\)
=>\(x\in\varnothing\)
b: \(\sqrt{4x^2-2x+\dfrac{1}{4}}=4x^3-x^2+8x-2\)
=>\(\sqrt{\left(2x\right)^2-2\cdot2x\cdot\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2}=4x^3-x^2+8x-2\)
=>\(\sqrt{\left(2x-\dfrac{1}{2}\right)^2}=4x^3-x^2+8x-2\)
=>\(\left|2x-\dfrac{1}{2}\right|=4x^3-x^2+8x-2\)(1)
TH1: x>=1/4
\(\left(1\right)\Leftrightarrow4x^3-x^2+8x-2=2x-\dfrac{1}{2}\)
=>\(4x^3-x^2+6x-\dfrac{3}{2}=0\)
=>\(x^2\left(4x-1\right)+1,5\left(4x-1\right)=0\)
=>\(\left(4x-1\right)\left(x^2+1,5\right)=0\)
=>4x-1=0
=>x=1/4(nhận)
TH2: x<1/4
Phương trình (1) sẽ trở thành:
\(4x^3-x^2+8x-2=-2x+\dfrac{1}{2}\)
=>\(x^2\left(4x-1\right)+2\left(4x-1\right)+0,5\left(4x-1\right)=0\)
=>\(\left(4x-1\right)\cdot\left(x^2+2,5\right)=0\)
=>4x-1=0
=>x=1/4(loại)
a. ĐKXĐ: \(x\ge\dfrac{1}{2}\)
Đặt \(\left\{{}\begin{matrix}\sqrt{x^2+2x}=a>0\\\sqrt{2x-1}=b\ge0\end{matrix}\right.\)
\(\Rightarrow a+b=\sqrt{3a^2-b^2}\)
\(\Leftrightarrow\left(a+b\right)^2=3a^2-b^2\)
\(\Leftrightarrow a^2-ab-b^2=0\Leftrightarrow\left(a-\dfrac{1+\sqrt{5}}{2}b\right)\left(a+\dfrac{\sqrt{5}-1}{2}b\right)=0\)
\(\Leftrightarrow a=\dfrac{1+\sqrt{5}}{2}b\Leftrightarrow\sqrt{x^2+2x}=\dfrac{1+\sqrt{5}}{2}\sqrt{2x-1}\)
\(\Leftrightarrow x^2+2x=\dfrac{3+\sqrt{5}}{2}\left(2x-1\right)\)
\(\Leftrightarrow x^2-\left(\sqrt{5}+1\right)x+\dfrac{3+\sqrt{5}}{2}=0\)
\(\Leftrightarrow\left(x-\dfrac{\sqrt{5}+1}{2}\right)^2=0\)
\(\Leftrightarrow x=\dfrac{\sqrt{5}+1}{2}\)
b. ĐKXĐ: \(x\ge5\)
\(\Leftrightarrow\sqrt{5x^2+14x+9}=\sqrt{x^2-x-20}+5\sqrt{x+1}\)
\(\Leftrightarrow5x^2+14x+9=x^2-x-20+25\left(x+1\right)+10\sqrt{\left(x+1\right)\left(x-5\right)\left(x+4\right)}\)
\(\Leftrightarrow2x^2-5x+2=5\sqrt{\left(x^2-4x-5\right)\left(x+4\right)}\)
Đặt \(\left\{{}\begin{matrix}\sqrt{x^2-4x-5}=a\ge0\\\sqrt{x+4}=b>0\end{matrix}\right.\)
\(\Rightarrow2a^2+3b^2=5ab\)
\(\Leftrightarrow\left(a-b\right)\left(2a-3b\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x^2-4x-5}=\sqrt{x+4}\\2\sqrt{x^2-4x-5}=3\sqrt{x+4}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2-4x-5=x+4\\4\left(x^2-4x-5\right)=9\left(x+4\right)\end{matrix}\right.\)
\(\Leftrightarrow...\)
a: ĐKXĐ: x>=-3/2
\(\sqrt{x^2+4}=\sqrt{2x+3}\)
=>\(x^2+4=2x+3\)
=>\(x^2-2x+1=0\)
=>\(\left(x-1\right)^2=0\)
=>x-1=0
=>x=1(nhận)
b: \(\sqrt{x^2-6x+9}=2x-1\)(ĐKXĐ: \(x\in R\))
=>\(\sqrt{\left(x-3\right)^2}=2x-1\)
=>\(\left\{{}\begin{matrix}\left(2x-1\right)^2=\left(x-3\right)^2\\x>=\dfrac{1}{2}\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}\left(2x-1-x+3\right)\left(2x-1+x-3\right)=0\\x>=\dfrac{1}{2}\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}\left(x+2\right)\left(3x-4\right)=0\\x>=\dfrac{1}{2}\end{matrix}\right.\)
=>x=4/3(nhận) hoặc x=-2(loại)
c:
Sửa đề: \(\sqrt{4x+12}=\sqrt{9x+27}-5\)
ĐKXĐ: \(x>=-3\)
\(\sqrt{4x+12}=\sqrt{9x+27}-5\)
=>\(2\sqrt{x+3}=3\sqrt{x+3}-5\)
=>\(-\sqrt{x+3}=-5\)
=>x+3=25
=>x=22(nhận)
d: ĐKXĐ: \(\left[{}\begin{matrix}x< =\dfrac{3-\sqrt{5}}{4}\\x>=\dfrac{3+\sqrt{5}}{4}\end{matrix}\right.\)
\(\sqrt{4x^2-6x+1}=\left|2x-5\right|\)
=>\(\sqrt{\left(4x^2-6x+1\right)}=\sqrt{4x^2-20x+25}\)
=>\(4x^2-6x+1=4x^2-20x+25\)
=>\(-6x+20x=25-1\)
=>\(14x=24\)
=>x=12/7(nhận)
ĐK: \(\hept{\begin{cases}x^2-x+2\ge0\\2x^2+4x\ge0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x\ge0\\x\le-2\end{cases}}\)
Ta có: \(VP=2\sqrt{x^2-x+2}-\sqrt{2x^2+4x}=\frac{2\left(x-2\right)^2}{2\sqrt{x^2-x+2}+\sqrt{2x^2+4x}}\ge0\)
=> \(VP=x-2\ge0\Rightarrow x\ge2\)
phương trình tương đương:
\(2x-2\sqrt{x^2-x+2}+\sqrt{2x^2+4x+2}-x-2=0\)
\(\Leftrightarrow\frac{2\left(x-2\right)}{2x+2\sqrt{x^2-x+2}}+\frac{x^2-4}{\sqrt{2x^2+4x+2}+x+2}=0\)
\(\text{}\Leftrightarrow\left(x-2\right)\left[\frac{2}{2x+2\sqrt{x^2-x+2}}+\frac{x+2}{\sqrt{2x^2+4x+2}+x+2}\right]=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-2=0\\\frac{2}{2x+2\sqrt{x^2-x+2}}+\frac{x+2}{\sqrt{2x^2+4x+2}+x+2}\end{cases}=0}\left(1\right)\)
(1) vô nghiệm vì x >=2
Vậy pt <=> x=2