K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1) Ta có: \(2x\left(x-3\right)+5\left(x-3\right)=0\)

\(\Leftrightarrow\left(x-3\right)\left(2x+5\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-\dfrac{5}{2}\end{matrix}\right.\)

2) Ta có: \(\left(x^2-4\right)-\left(x-2\right)\left(3-2x\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x+2\right)+\left(x-2\right)\left(2x-3\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(3x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=\dfrac{1}{3}\end{matrix}\right.\)

3) Ta có: \(\left(2x-1\right)^2-\left(2x+5\right)^2=11\)

\(\Leftrightarrow4x^2-4x-1-4x^2-20x-25=11\)

\(\Leftrightarrow-24x=11+1+25=37\)

hay \(x=-\dfrac{37}{24}\)

 

5) Ta có: \(3x^2-5x-8=0\)

\(\Leftrightarrow3x^2+3x-8x-8=0\)

\(\Leftrightarrow3x\left(x+1\right)-8\left(x+1\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(3x-8\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=\dfrac{8}{3}\end{matrix}\right.\)

8) Ta có: \(\left|x-5\right|=3\)

\(\Leftrightarrow\left[{}\begin{matrix}x-5=3\\x-5=-3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=8\\x=2\end{matrix}\right.\)

10) Ta có: \(\left|2x+1\right|=\left|x-1\right|\)

\(\Leftrightarrow\left[{}\begin{matrix}2x+1=x-1\\2x+1=1-x\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x-x=-1-1\\2x+x=1-1\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=0\end{matrix}\right.\)

NV
12 tháng 8 2021

1.

\(\left(x-5\right)^2+3\left(x-5\right)=0\)

\(\Leftrightarrow\left(x-5\right)\left(x-5+3\right)=0\)

\(\Leftrightarrow\left(x-5\right)\left(x-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-5=0\\x-2=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=5\\x=2\end{matrix}\right.\)

2.

\(\left(x^2-9\right)+2\left(x-3\right)=0\)

\(\Leftrightarrow\left(x-3\right)\left(x+3\right)+2\left(x-3\right)=0\)

\(\Leftrightarrow\left(x-3\right)\left(x+5\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\\x+5=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-5\end{matrix}\right.\)

NV
12 tháng 8 2021

3.

\(\left(2x+1\right)^2+\left(x-1\right)\left(2x+1\right)=0\)

\(\Leftrightarrow\left(2x+1\right)\left(2x+1+x-1\right)=0\)

\(\Leftrightarrow\left(2x+1\right).3x=0\)

\(\Leftrightarrow\left[{}\begin{matrix}3x=0\\2x+1=0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=0\\x=-\dfrac{1}{2}\end{matrix}\right.\)

4.

\(\left(x-1\right)\left(x+3\right)+\left(x+3\right)^2=0\)

\(\Leftrightarrow\left(x+3\right)\left(x-1+x+3\right)=0\)

\(\Leftrightarrow\left(x+3\right)\left(2x+2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+3=0\\2x+2=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=-1\end{matrix}\right.\)

12 tháng 8 2021

1/ ( x-1) (2x+1) =0

\(\Rightarrow\left[{}\begin{matrix}x-1=0\\2x+1=0\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=1\\x=-0,5\end{matrix}\right.\)

2/ x (2x-1) (3x+15) =0

\(\Rightarrow\left[{}\begin{matrix}x=0\\2x-1=0\\3x+15=0\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=0\\x=0,5\\x=-5\end{matrix}\right.\)

3/ (2x-6) (3x+4).x=0

\(\Rightarrow\left[{}\begin{matrix}2x-6=0\\3x+4=0\\x=0\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=3\\x=-\dfrac{4}{3}\\x=0\end{matrix}\right.\)

4/ (2x-10)(x2+1)=0

\(\Rightarrow\left[{}\begin{matrix}2x-10=0\\x^2+1=0\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=5\\x^2=-1\left(loại\right)\end{matrix}\right.\)

5/ (x2+3) (2x-1) =0

\(\Rightarrow\left[{}\begin{matrix}x^2+3=0\\2x-1=0\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x^2=-3\left(loại\right)\\x=0,5\end{matrix}\right.\)

6/ (3x-1) (2x2 +1)=0

\(\Rightarrow\left[{}\begin{matrix}3x-1=0\\2x^2+1=0\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=-\dfrac{1}{3}\\x^2=-0,5\left(loại\right)\end{matrix}\right.\)

 

1: Ta có: \(\left(x-1\right)\left(2x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\2x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-\dfrac{1}{2}\end{matrix}\right.\)

2: Ta có: \(x\left(2x-1\right)\left(3x+15\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\2x-1=0\\3x+15=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{1}{2}\\x=-5\end{matrix}\right.\)

3: Ta có: \(\left(2x-6\right)\left(3x+4\right)x=0\)

\(\Leftrightarrow\left[{}\begin{matrix}2x-6=0\\3x+4=0\\x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-\dfrac{4}{3}\\x=0\end{matrix}\right.\)

1: Ta có: \(2x\left(x+3\right)-6\left(x-3\right)=0\)

\(\Leftrightarrow2x^2+6x-6x+18=0\)

\(\Leftrightarrow2x^2+18=0\left(loại\right)\)

2: Ta có: \(2x^2\left(2x+3\right)+\left(2x+3\right)=0\)

\(\Leftrightarrow2x+3=0\)

hay \(x=-\dfrac{3}{2}\)

3: Ta có: \(\left(x-2\right)\left(x+1\right)-4x\left(x-2\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(1-3x\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=\dfrac{1}{3}\end{matrix}\right.\)

4: Ta có: \(2x\left(x-5\right)-3x+15=0\)

\(\Leftrightarrow\left(x-5\right)\left(2x-3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=5\\x=\dfrac{3}{2}\end{matrix}\right.\)

5: Ta có: \(3x\left(x+4\right)-2x-8=0\)

\(\Leftrightarrow\left(x+4\right)\left(3x-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-4\\x=\dfrac{2}{3}\end{matrix}\right.\)

6: Ta có: \(x^2\left(2x-6\right)+2x-6=0\)

\(\Leftrightarrow2x-6=0\)

hay x=3

20 tháng 1 2022

\(1,\Leftrightarrow7-2x-4=-x-4\)

\(\Leftrightarrow x-2x=-4-7+4\)

\(\Leftrightarrow-x=-7\)

\(\Leftrightarrow x=7\)

Vậy \(S=\left\{7\right\}\)

\(2,\Leftrightarrow x-1-2x+1=9-x\)

\(\Leftrightarrow x+x-2x=9-1+1\)

\(\Leftrightarrow0x=9\)

\(\Rightarrow x\in\varnothing\)

Vậy \(S=\left\{\varnothing\right\}\)

\(3,\Leftrightarrow2x^2+3x-2x+3=2x^2+10x-x-5\)

\(\Leftrightarrow2x^2-2x^2+3x-2x-10x+x=-5-3\)

\(-8x=-8\)

\(\Rightarrow x=1\)

Vậy \(S=\left\{1\right\}\)

12 tháng 8 2021

1/ x2-3x+2=0

⇒ (x2-2x)-(x-2)=0

⇒ x(x-2)-(x-2)=0

⇒ (x-1)(x-2)=0

\(\Rightarrow\left[{}\begin{matrix}x-1=0\\x-2=0\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)

2) x2-6x+5=0

⇒x2-6x+9-4=0

⇒(x2-6x+9)-22=0

⇒(x-3)2-22=0

⇒(x-3-2)(x-3+2)=0

⇒(x-5)(x-1)=0

\(\Rightarrow\left[{}\begin{matrix}x-1=0\\x-5=0\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=1\\x=5\end{matrix}\right.\)

3) 2x2+5x+3=0

⇒ (2x2+2x)+(3x+3)=0

⇒ 2x(x+1)+3(x+1)=0

⇒ (x+1)(2x+3)=0

\(\Rightarrow\left[{}\begin{matrix}x+1=0\\2x+3=0\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=-1\\x=-1,5\end{matrix}\right.\)

4) x2-8x+15=0

⇒ (x2-8x+16)-1=0

⇒ (x-4)2-12=0

⇒ (x-4-1)(x-4+1)=0

⇒ (x-5)(x-3)=0

\(\Rightarrow\left[{}\begin{matrix}x-3=0\\x-5=0\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=3\\x=5\end{matrix}\right.\)

5) x2-x-12=0

⇒ (x2-4x)+(3x-12)=0

⇒ x(x-4)+3(x-4)=0

⇒ (x-4)(x+3)=0

\(\Rightarrow\left[{}\begin{matrix}x+3=0\\x-4=0\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=-3\\x=4\end{matrix}\right.\)

1: Ta có: \(x^2-3x+2=0\)

\(\Leftrightarrow\left(x-1\right)\left(x-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)

2: Ta có: \(x^2-6x+5=0\)

\(\Leftrightarrow\left(x-1\right)\left(x-5\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=5\end{matrix}\right.\)

3: Ta có: \(2x^2+5x+3=0\)

\(\Leftrightarrow\left(x+1\right)\left(2x+3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=-\dfrac{3}{2}\end{matrix}\right.\)

4: Ta có: \(x^2-8x+15=0\)

\(\Leftrightarrow\left(x-3\right)\left(x-5\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=5\end{matrix}\right.\)

5: Ta có: \(x^2-x-12=0\)

\(\Leftrightarrow\left(x-4\right)\left(x+3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=4\\x=-3\end{matrix}\right.\)

7 tháng 8 2021

1, \(\left(x-1\right)\left(x+2\right)-\left(x-1\right)^2=0\)

\(\Leftrightarrow\left(x-1\right)\left[x+2-\left(x-1\right)\right]=0\)

\(\Leftrightarrow3\left(x-1\right)=0\Leftrightarrow x=1\)

2, \(\left(x-2\right)^2-3\left(x-2\right)\left(x+1\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left[x-2-3\left(x+1\right)\right]=0\)

\(\Leftrightarrow\left(x-2\right)\left(-2x-5\right)=0\Leftrightarrow x=-\dfrac{5}{2};x=2\)

3, \(\left(5-2x\right)\left(2x+7\right)=4x^2-25=\left(2x-5\right)\left(2x+5\right)\)

\(\Leftrightarrow\left(5-2x\right)\left(2x+7\right)+\left(5-2x\right)\left(2x+5\right)=0\)

\(\Leftrightarrow\left(5-2x\right)\left(2x+7+2x+5\right)=0\Leftrightarrow\left(4x+12\right)\left(5-2x\right)=0\Leftrightarrow x=-3;x=\dfrac{5}{2}\)

1) Ta có: \(\left(x-1\right)\left(x+2\right)-\left(x-1\right)^2=0\)

\(\Leftrightarrow\left(x-1\right)\left(x+2-x+1\right)=0\)

\(\Leftrightarrow x-1=0\)

hay x=1

2) Ta có: \(\left(x-2\right)^2-3\left(x-2\right)\left(x+1\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x-2-3x-3\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(-2x-5\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=\dfrac{-5}{2}\end{matrix}\right.\)

19 tháng 3 2021

1, x(x-1)=2(x-1)

<=> x(x-1)-2(x-1)=0

<=> (x-2)(x-1)=0

<=>x=2 hoặc x=1 

vậy ...

2, (x+2)(2x-3)=x^2 -4

<=>(x+2)(2x-3)=(x-2)(x+2)

<=> (x+2)(2x-3)-(x-2)(x+2)=0

<=> (x+2)(2x-3-x+2)=0 

<=> x=-2 hoặc x=1

vây... 

3,x^2 +3x +2=0 

<=> x^2 +x+2x+2=0 

<=>(x+2)(x+1)=0

<=> x=-2 hoặc x=-1 

vậy ...

5, x^3+x^2-12x =0

<=> x(x^2+x-12)=0

<=>x(x^2-3x+4x-12)=0

<=>x(x+4)(x-3)=0 

<=> x=0 hoặc x=-4 hoặc x=3

vậy ... 

 

19 tháng 3 2021

V ô chat con ơi