Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)\(2x^4+2016=x^4\sqrt{x+3}+2016x\)
a)\(pt\Leftrightarrow2x^4-2016x+2014=x^4\sqrt{x+3}-2\)
\(\Leftrightarrow2x^4-2016x+2014=x^4\sqrt{x+3}-2\)
\(\Leftrightarrow2\left(x-1\right)\left(x^3+x^2+x-1007\right)=\frac{x^8\left(x+3\right)-4}{x^4\sqrt{x+3}+2}\)
\(\Leftrightarrow2\left(x-1\right)\left(x^3+x^2+x-1007\right)-\frac{\left(x-1\right)\left(x^8+4x^7+4x^6+4x^5+4x^4+4x^3+4x^2+4x+4\right)}{x^4\sqrt{x+3}+}=0\)
\(\Leftrightarrow\left(x-1\right)\left(2\left(x^3+x^2+x-1007\right)-\frac{\left(x^8+4x^7+4x^6+4x^5+4x^4+4x^3+4x^2+4x+4\right)}{x^4\sqrt{x+3}+}\right)=0\)
\(\Rightarrow x-1=0\Rightarrow x=1\)
b)\(\sqrt[3]{81x-8}=x^3-2x^2+\frac{4}{3}x-2\)
bài này nghiệm khủng :vko liên hp dc, với sợ bị nhai lại nên đưa link tham khảo nhé :v
Phương trình - hệ phương trình - bất phương trình - Diễn đàn Toán học
c)\(\sqrt{2-x^2}+\sqrt{2-\frac{1}{x^2}}=4-x-\frac{1}{x}\)
\(pt\Leftrightarrow\sqrt{2-x^2}-1+\sqrt{2-\frac{1}{x^2}}-1=2-x-\frac{1}{x}\)
\(\Leftrightarrow\frac{2-x^2-1}{\sqrt{2-x^2}+1}+\frac{2-\frac{1}{x^2}-1}{\sqrt{2-\frac{1}{x^2}}+1}=-\frac{x^2-2x+1}{x}\)
\(\Leftrightarrow\frac{1-x^2}{\sqrt{2-x^2}+1}+\frac{\frac{x^2-1}{x^2}}{\sqrt{2-\frac{1}{x^2}}+1}+\frac{x^2-2x+1}{x}=0\)
\(\Leftrightarrow\frac{-\left(x-1\right)\left(x+1\right)}{\sqrt{2-x^2}+1}+\frac{\frac{\left(x-1\right)\left(x+1\right)}{x^2}}{\sqrt{2-\frac{1}{x^2}}+1}+\frac{\left(x-1\right)^2}{x}=0\)
\(\Leftrightarrow\left(x-1\right)\left(\frac{-\left(x+1\right)}{\sqrt{2-x^2}+1}+\frac{\frac{x+1}{x^2}}{\sqrt{2-\frac{1}{x^2}}+1}+\frac{x-1}{x}\right)=0\)
\(\Rightarrow x-1=0\Rightarrow x=1\)
\(1,\sqrt{x+2+4\sqrt{x-2}}=5\left(x\ge2\right)\\ \Leftrightarrow\sqrt{\left(\sqrt{x-2}+4\right)^2}=5\\ \Leftrightarrow\sqrt{x-2}+4=5\\ \Leftrightarrow\sqrt{x-2}=1\\ \Leftrightarrow x-2=1\Leftrightarrow x=3\\ 2,\sqrt{x+3+4\sqrt{x-1}}=2\left(x\ge1\right)\\ \Leftrightarrow\sqrt{\left(\sqrt{x-1}+4\right)^2}=2\\ \Leftrightarrow\sqrt{x-1}+4=2\\ \Leftrightarrow\sqrt{x-1}=-2\\ \Leftrightarrow x\in\varnothing\left(\sqrt{x-1}\ge0\right)\)
\(3,\sqrt{x+\sqrt{2x-1}}=\sqrt{2}\left(x\ge\dfrac{1}{2};x\ne1\right)\\ \Leftrightarrow x+\sqrt{2x-1}=2\\ \Leftrightarrow x-2=-\sqrt{2x-1}\\ \Leftrightarrow x^2-4x+4=2x-1\\ \Leftrightarrow x^2-6x+5=0\\ \Leftrightarrow\left(x-5\right)\left(x-1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=5\left(tm\right)\\x=1\left(loại\right)\end{matrix}\right.\)
\(4,\sqrt{x-2+\sqrt{2x-5}}=3\sqrt{2}\left(x\ge\dfrac{5}{2}\right)\\ \Leftrightarrow\sqrt{2x-4+2\sqrt{2x-5}}=6\\ \Leftrightarrow\sqrt{\left(\sqrt{2x-5}+1\right)^2}=6\\ \Leftrightarrow\sqrt{2x-5}+1=6\\ \Leftrightarrow\sqrt{2x-5}=5\\ \Leftrightarrow2x-5=25\Leftrightarrow x=15\left(TM\right)\)
ĐKXĐ: \(x\ge\dfrac{3}{2}\).
PT đã cho tương đương:
\(\dfrac{x-4}{\sqrt{2x-3}+\sqrt{x+1}}=x-4\)
\(\Leftrightarrow\left[{}\begin{matrix}x-4=0\Leftrightarrow x=4\left(TMĐK\right)\\\sqrt{2x-3}+\sqrt{x+1}=1\left(1\right)\end{matrix}\right.\).
Ta có \(\left(1\right)\Leftrightarrow2x-3+x+1+2\sqrt{\left(2x-3\right)\left(x+1\right)}=1\)
\(\Leftrightarrow2\sqrt{\left(2x-3\right)\left(x+1\right)}=3-3x\).
Do đó 3 - 3x \(\ge0\Leftrightarrow x\le1\) (trái với đkxđ).
Suy ra (1) vô nghiệm.
Vậy ncpt là x = 4.
\(x\ge-3\)
\(x^4\left(\sqrt{x+3}-2\right)+2016\left(x-1\right)=0\)
\(\Leftrightarrow\dfrac{x^4\left(x-1\right)}{\sqrt{x+3}+2}+2016\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(\dfrac{x^4}{\sqrt{x+3}+2}+2016\right)=0\)
\(\Leftrightarrow x-1=0\) (do \(\dfrac{x^4}{\sqrt{x+3}+2}+2016>0\) \(\forall x\ge-3\) )
\(\Rightarrow x=1\)
Vậy pt có nghiệm duy nhất \(x=1\)