K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
27 tháng 5 2020

Hoặc bạn có thể dùng mẹo: Thấy tổng các hệ số bậc chẵn bằng tổng các hệ số bậc lẻ nên PT chắc chắn có nghiệm $x=-1$

Phân tích đa thức để xuất hiện nhân tử $(x+1)$.

AH
Akai Haruma
Giáo viên
27 tháng 5 2020

Lời giải:

$x^4-2x^3+5x^2-4x-12=0$

$\Leftrightarrow (x^4-2x^3+x^2)+4(x^2-x)-12=0$

$\Leftrightarrow (x^2-x)^2+4(x^2-x)-12=0$

$\Leftrightarrow (x^2-x)^2+4(x^2-x)^2+4-16=0$

$\Leftrightarrow (x^2-x+2)^2-4^2=0$

$\Leftrightarrow (x^2-x+2-4)(x^2-x+2+4)=0$

$\Leftrightarrow (x^2-x-2)(x^2-x+6)=0$

$\Leftrightarrow (x+1)(x-2)(x^2-x+6)=0$

Dễ thấy $x^2-x+6=(x-\frac{1}{2})^2+\frac{23}{4}>0$ nên $(x+1)(x-2)=0$

$\Rightarrow x=-1$ hoặc $x=2$

7 tháng 3 2021

\(5x^2+4x+2x^3+x^4-12=0\)

\(\Leftrightarrow x^4+2x^3+5x^2+4x-12=0\)

\(\Leftrightarrow x^4-x^3+3x^3-3x^2+8x^2-8x+12x-12=0\)

\(\Leftrightarrow x^3\left(x-1\right)+3x^2\left(x-1\right)+8x\left(x-1\right)+12\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x^3+3x^2+8x+12\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left[x^3+2x^2+x^2+2x+6x+12\right]=0\)

\(\Leftrightarrow\left(x-1\right)\left[x^2\left(x+2\right)+x\left(x+2\right)+6\left(x+2\right)\right]=0\)

\(\Leftrightarrow\left(x-1\right)\left(x+2\right)\left(x^2+x+6\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x+2\right)\left[x^2+2\times\dfrac{1}{2}x+\left(\dfrac{1}{2}\right)^2-\left(\dfrac{1}{2}\right)^2+6\right]=0\)

\(\Leftrightarrow\left(x-1\right)\left(x+2\right)\left[\left(x+\dfrac{1}{2}\right)^2+\dfrac{23}{4}\right]\)

\(\Rightarrow\left[{}\begin{matrix}x-1=0\\x+2=0\\\left(x^2+\dfrac{1}{2}\right)^2+\dfrac{23}{4}=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=1\\x=-2\end{matrix}\right.\)

Vì \(\left(x^2+\dfrac{1}{2}\right)^2\ge0\forall x\Rightarrow\left(x^2+\dfrac{1}{2}\right)^2+\dfrac{23}{4}\ge\dfrac{23}{4}\forall x\)

\(\Rightarrow\left(x^2+\dfrac{1}{2}\right)^2+\dfrac{23}{4}\) vô nghiệm

Vậy phương trình có tập nghiệm là\(S=\left\{1;-2\right\}\)

7 tháng 3 2021

Mình có giải ở câu hỏi trước rồi nhé.

22 tháng 3 2018

2x3 + 5x2 – 3x = 0

⇔ x(2x2 + 5x – 3) = 0

⇔ x.(2x2 + 6x – x – 3) = 0

⇔ x. [2x(x + 3) – (x + 3)] = 0

⇔ x.(2x – 1)(x + 3) = 0

⇔ x = 0 hoặc 2x – 1 = 0 hoặc x + 3 = 0

   + 2x – 1 = 0 ⇔ 2x = 1 ⇔ x = 1/2.

   + x + 3 = 0 ⇔ x = -3.

Vậy phương trình có tập nghiệm Giải bài 51 trang 33 SGK Toán 8 Tập 2 | Giải toán lớp 8

d: Ta có: \(\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)=24\)

\(\Leftrightarrow\left(x^2+5x+4\right)\left(x^2+5x+6\right)-24=0\)

\(\Leftrightarrow x\left(x+5\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-5\end{matrix}\right.\)

27 tháng 8 2021

hi

27 tháng 8 2021

sao bn ko viết cách làm ra cho mik bít lun

a: \(\dfrac{2x^3-5x^2-x+1}{2x+1}\)

\(=\dfrac{2x^3+x^2-6x^2-3x+2x+1}{2x+1}\)

\(=x^2-3x+1\)

b: \(\dfrac{x^3-2x+4}{x+2}\)

\(=\dfrac{x^3+2x^2-2x^2-4x+2x+4}{x+2}\)

\(=x^2-2x+2\)

c) Ta có: \(\dfrac{5x^4+9x^3-2x^2-4x-8}{x-1}\)

\(=\dfrac{5x^4-5x^3+14x^3-14x^2+12x^2-12x+8x-8}{x-1}\)

\(=\dfrac{5x^3\left(x-1\right)+14x^2\left(x-1\right)+12x\left(x-1\right)+8\left(x-1\right)}{x-1}\)

\(=5x^3+14x^2+12x+8\)

d) Ta có: \(\dfrac{5x^3+14x^2+12x+8}{x+2}\)

\(=\dfrac{5x^3+10x^2+4x^2+8x+4x+8}{x+2}\)

\(=\dfrac{5x^2\left(x+2\right)+4x\left(x+2\right)+4\left(x+2\right)}{x+2}\)

\(=5x^2+4x+4\)

c) Ta có: \(\dfrac{5x^4+9x^3-2x^2-4x-8}{x-1}\)

\(=\dfrac{5x^4-5x^3+14x^3-14x^2+12x^2-12x+8x-8}{x-1}\)

\(=\dfrac{5x^3\left(x-1\right)+14x^2\left(x-1\right)+12x\left(x-1\right)+8\left(x-1\right)}{x-1}\)

\(=5x^3+14x^2+12x+8\)

31 tháng 10 2021

b: \(\dfrac{\left(x^2-1\right)\left(x^2+1\right)-2x\left(x^2-1\right)}{x^2-1}\)

\(=x^2-2x+1\)

\(=\left(x-1\right)^2\)

c: \(=\dfrac{5x^4-5x^3+14x^3-14x^2+12x^2-12x+8x-8}{x-1}\)

\(=5x^3+14x^2+12x+8\)

28 tháng 1 2019