Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐẶt x+1/x = m
suy ra x2+1/x2=m2-2
Vậy m2-2+9/2m+7=0
2m2+9m+10=0
(2m2+4m) +(5m+10)=0
2m(m+2)+5(m+2)=0
\(\Leftrightarrow\orbr{\begin{cases}m+2=0\\2m+5=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}m=-2\\m=\frac{-5}{2}\end{cases}}\)
Với m=-2
x+1/x=-2 hay x2+2x+1=0
x=-1
Với m=-5/2 làm tương tự
ĐK: \(x\ne\pm2\)
Phương trình đã cho tương đương với: \(\left(\frac{x+3}{x-2}\right)^2+6\left(\frac{x-3}{x+2}\right)^2-7\left(\frac{x+3}{x-2}.\frac{x-3}{x+2}\right)=0\)(1)
Đặt \(\frac{x+3}{x-2}=t,\frac{x-3}{x+2}=k\)
Khi đó (1) trở thành: \(t^2+6k^2-7tk=0\)
\(\Leftrightarrow t\left(t-6k\right)-k\left(t-6k\right)=0\Leftrightarrow\left(t-k\right)\left(t-6k\right)=0\Leftrightarrow\orbr{\begin{cases}t=k\\t=6k\end{cases}}\)
- Nếu t = k thì \(\frac{x+3}{x-2}=\frac{x-3}{x+2}\Rightarrow\left(x+3\right)\left(x+2\right)=\left(x-2\right)\left(x-3\right)\)
\(\Leftrightarrow x^2+5x+6=x^2-5x+6\Rightarrow5x=-5x\Rightarrow x=0\)(thỏa mãn điều kiện)
- Nếu t = 6k thì \(\frac{x+3}{x-2}=6.\frac{x-3}{x+2}\)
\(\Rightarrow\left(x+3\right)\left(x+2\right)=6\left(x-3\right)\left(x-2\right)\)
\(\Leftrightarrow x^2+5x+6=6x^2-30x+36\)
\(\Leftrightarrow6x^2-30x+36-x^2-5x-6=0\)
\(\Leftrightarrow5x^2-35x+30=0\Leftrightarrow5\left(x^2-7x+6\right)=0\)
\(\Leftrightarrow5\left(x-1\right)\left(x-6\right)=0\Leftrightarrow\orbr{\begin{cases}x=1\\x=6\end{cases}}\) (thỏa mãn điều kiện)
Vậy tập nghiệm của phương trình là \(S=\left\{0;1;6\right\}\)
Ta có: \(x^2+\frac{1}{x^2}-\frac{9}{2}\left(x+\frac{1}{x}\right)+7=0\)
<=> \(\left(x^2+\frac{1}{x^2}+2\right)-\frac{9}{2}\left(x+\frac{1}{x}\right)+5=0\)
,<=> \(\left(x+\frac{1}{x}\right)^2-\frac{9}{2}\left(x+\frac{1}{x}\right)+\frac{81}{16}-\frac{1}{16}=0\)
<=> \(\left(x+\frac{1}{x}-\frac{9}{4}\right)^2=\frac{1}{16}\)
<=> \(\orbr{\begin{cases}x+\frac{1}{x}-\frac{9}{4}=\frac{1}{4}\\x+\frac{1}{x}-\frac{9}{4}=-\frac{1}{4}\end{cases}}\)
<=> \(\orbr{\begin{cases}x+\frac{1}{x}-\frac{5}{2}=0\\x+\frac{1}{x}-2=0\end{cases}}\)
<=> \(\orbr{\begin{cases}x^2-\frac{5}{2}x+1=0\\x^2-2x+1=0\end{cases}}\)
<=> \(\orbr{\begin{cases}\left(x^2-\frac{5}{2}x+\frac{25}{16}\right)=\frac{9}{16}\\\left(x-1\right)^2=0\end{cases}}\)
<=> \(\orbr{\begin{cases}\left(x-\frac{5}{4}\right)^2=\frac{9}{16}\\x-1=0\end{cases}}\)
<=> x - 5/4 = 3/4 hoặc x - 5/4 = -3/4
hoặc x = 1
<=> x = 2 hoặc x = 1/2
hoặc x = 1
Vậy S = {1/2; 1; 2}
Cái bài đầu giải BPT bn ghi cái dj ak ,mik cx k hỉu nữa
V mik giải bài 2 nghen, sửa lại đề bài đầu rồi mik giải cho
\(3x-3=|2x+1|\)
Điều kiện: \(3x-3\ge0\Leftrightarrow3x\ge3\Leftrightarrow x\ge1\)
\(\Leftrightarrow\orbr{\begin{cases}2x+1=3x-3\\2x+1=-3x+3\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}2x-3x=-1-3\\2x+3x=-1+3\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}-x=-3\\5x=2\end{cases}\Leftrightarrow\orbr{\begin{cases}x=3\left(n\right)\\x=\frac{2}{5}\left(l\right)\end{cases}}}\)
Vậy S={3}
Cài đề câu b ,bn xem lại nhé!
\(\frac{2x-3}{35}+\frac{x\left(x-2\right)}{7}>\frac{x^2}{7}-\frac{2x-3}{5}\)
\(\Leftrightarrow\frac{2x-3}{35}+\frac{5x\left(x-2\right)}{35}-\frac{5x^2}{35}+\frac{7\left(2x-3\right)}{35}>0\)
\(\Leftrightarrow2x-3+5x\left(x-2\right)-5x^2+7\left(2x-3\right)>0\)
\(\Leftrightarrow2x-3+5x^2-10x-5x^2+14x-21>0\)
\(\Leftrightarrow6x-24>0\)
\(\Leftrightarrow x>4\)
VẬY TẬP NGHIỆM CỦA BẤT PHƯƠNG TRÌNH LÀ : S = { \(x\text{\x}>4\)}
\(\frac{6x+1}{18}+\frac{x+3}{12}\le\frac{5x+3}{6}+\frac{12-5x}{9}\)
\(\Leftrightarrow\frac{6\left(6x+1\right)}{108}+\frac{9\left(x+3\right)}{108}\le\frac{18\left(5x+3\right)}{108}+\frac{12\left(12-5x\right)}{108}\)
\(\Leftrightarrow36x+6+9x+27\le90x+54+144-60x\)
\(\Leftrightarrow36x+6+9x+27-90x-54-144+60x\le0\)
\(\Leftrightarrow15x-165\le0\)
\(\Leftrightarrow x\le11\)
VẬY TẬP NGHIỆM CỦA BẤT PHƯƠNG trình ..........
tk mk nka !!! chúc bạn học tốt !!!
a/ Đặt \(\hept{\begin{cases}\frac{x+1}{x-2}=a\\\frac{x+1}{x-4}=b\end{cases}}\) thì có
\(a^2+b-\frac{12b^2}{a^2}=0\)
\(\Leftrightarrow\left(a^2-3b\right)\left(a^2+4b\right)=0\)
b/ \(2x^2+3xy-2y^2=7\)
\(\Leftrightarrow\left(2x-y\right)\left(x+2y\right)=7\)
nhìn căng nhể :))
a) ( x - 1 )( x - 3 )( x + 5 )( x + 7 ) - 297 = 0
<=> [ ( x - 1 )( x + 5 ) ][ ( x - 3 )( x + 7 ) ] - 297 = 0
<=> ( x2 + 4x - 5 )( x2 + 4x - 21 ) - 297 = 0
Đặt t = x2 + 4x - 5
pt <=> t( t - 16 ) - 297 = 0
<=> t2 - 16t - 297 = 0
<=> t2 - 27t + 11t - 297 = 0
<=> t( t - 27 ) + 11( t - 27 ) = 0
<=> ( t - 27 )( t + 11 ) = 0
<=> ( x2 + 4x - 5 - 27 )( x2 + 4x - 5 + 11 ) = 0
<=> ( x2 + 4x - 32 )( x2 + 4x + 6 ) = 0
<=> ( x2 - 4x + 8x - 32 )( x2 + 4x + 6 ) = 0
<=> [ x( x - 4 ) + 8( x - 4 ) ]( x2 + 4x + 6 ) = 0
<=> ( x - 4 )( x + 8 )( x2 + 4x + 6 ) = 0
Đến đây dễ rồi :)
\(ĐKXĐ:\) \(x\ne0\)
Đặt \(x+\frac{1}{x}=y\) \(\left(\text{*}\right)\), thì khi đó \(x^2+\frac{1}{x^2}=y^2-2\)
Do đó, \(y^2-2-\frac{9}{2}y+7=0\)
\(\Leftrightarrow\) \(y^2-\frac{9}{2}y+5=0\)
\(\Leftrightarrow\) \(2y^2-9y+10=0\)
\(\Leftrightarrow\) \(2y^2-4y-5y+10=0\)
\(\Leftrightarrow\) \(2y\left(y-2\right)-5\left(y-2\right)=0\)
\(\Leftrightarrow\) \(\left(y-2\right)\left(2y-5\right)=0\)
\(\Leftrightarrow\) \(^{y-2=0}_{2y-5=0}\) \(\Leftrightarrow\) \(^{y=2}_{y=\frac{5}{2}}\)
\(\text{*)}\) Với trường hợp \(y=2\) thì khi đó, \(\left(\text{*}\right)\) \(\Rightarrow\) \(x+\frac{1}{x}=2\) \(\left(1\right)\)
Vì \(x\ne0\) nên từ \(\left(1\right)\) suy ra \(x^2+1=2x\) \(\Leftrightarrow\) \(x^2-2x+1=0\) \(\Leftrightarrow\) \(\left(x-1\right)^2=0\) \(\Leftrightarrow\) \(x-1=0\) \(\Leftrightarrow\) \(x=1\) ( thỏa mãn điều kiện xác định)
\(\text{*)}\) Với \(y=\frac{5}{2}\) thì \(\left(\text{*}\right)\) \(\Rightarrow\) \(x+\frac{1}{x}=\frac{5}{2}\) \(\left(2\right)\)
Từ \(\left(2\right)\) \(\Rightarrow\) \(2x^2+2=5x\) (do \(x\ne0\) )
\(\Leftrightarrow\) \(2x^2-5x+2=0\)
\(\Leftrightarrow\) \(2x^2-4x-x+2=0\)
\(\Leftrightarrow\) \(2x\left(x-2\right)-\left(x-2\right)=0\)
\(\Leftrightarrow\) \(\left(x-2\right)\left(2x-1\right)=0\)
\(\Leftrightarrow\) \(^{x-2=0}_{2x-1=0}\) \(\Leftrightarrow\) \(^{x=2}_{x=\frac{1}{2}}\) (t/mãn điều kiện xác định)
Vậy, \(S=\left\{1;2;\frac{1}{2}\right\}\)
ĐKXĐ: ....
Đặt \(x+\frac{1}{x}=t\Rightarrow x^2+\frac{1}{x^2}=t^2-2\)
\(t^2-2+\frac{9}{2}t+7=0\)
\(\Leftrightarrow2t^2+9t+10=0\Rightarrow\left[{}\begin{matrix}t=-2\\t=-\frac{5}{2}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x+\frac{1}{x}=-2\\x+\frac{1}{x}=-\frac{5}{2}\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x^2+2x+1=0\\2x^2+5x+2=0\end{matrix}\right.\)