Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1: x=3/4-1/2=3/4-2/4=1/4
2: x-1/5=2/11
=>x=2/11+1/5=21/55
3: x-5/6=16/42-8/56
=>x-5/6=8/21-4/28=5/21
=>x=5/21+5/6=15/14
4: x/5=5/6-19/30
=>x/5=25/30-19/30=6/30=1/5
=>x=1
5: =>|x|=1/3+1/4=7/12
=>x=7/12 hoặc x=-7/12
6: x=-1/2+3/4
=>x=3/4-1/2=1/4
11: x-(-6/12)=9/48
=>x+1/2=3/16
=>x=3/16-1/2=-5/16
1)x= 1/4
2)x= 2/11+ 1/5
x= 21/55
3)x - 5/6 = 5/21
x = 5/21+5/6
x = 15/14
4)x/5 = 5/6 + -19/30
x:5 = 1/5
x = 1/5.5
x = 1
5) |x| - 1/4 = 6/18
|x| = 6/18 - 1/4
|x| =7/12
⇒x= 7/12 hoặc -7/12
6)x = -1/2 +3/4
x= 1/4
7) x/15 = 3/5 + -2/3
x:15 = -1/15
x = -1/15. 15
x = -1
8)11/8 + 13/6 = 85/x
85/24 = 85/x
⇒ x = 24
9) x - 7/8 = 13/12
x = 13/12 + 7/8
x = 47/24
10)x - -6/15 = 4/27
x = 4/27 + (-6/15)
x = -34/135
11) -(-6/12)+x = 9/48
x= 9/48 - 6/12
x = -5/16
12) x - 4/6 = 5/25 + -7/15
x -4/6 = -4/15
x = -4/15 + 4/6
x = 2/5
a) \(({x^2} + 2x + 3) + (3{x^2} - 5x + 1) = ({x^2} + 3{x^2}) + (2x - 5x) + (3 + 1) = 4{x^2} - 3x + 4\);
b) \(\begin{array}{l}(4{x^3} - 2{x^2} - 6) - ({x^3} - 7{x^2} + x - 5) = 4{x^3} - 2{x^2} - 6 - {x^3} + 7{x^2} - x + 5\\ = (4{x^3} - {x^3}) + ( - 2{x^2} + 7{x^2}) - x + ( - 6 + 5) = 3{x^3} + 5{x^2} - x - 1\end{array}\);
c) \(\begin{array}{l} - 3{x^2}(6{x^2} - 8x + 1) = - 3{x^2}.6{x^2} - - 3{x^2}.8x + - 3{x^2}.1\\ = - 18{x^{2 + 2}} + 24{x^{2 + 1}} - 3{x^2} = - 18{x^4} + 24{x^3} - 3{x^2}\end{array}\);
d) \(\begin{array}{l}(4{x^2} + 2x + 1)(2x - 1) = (4{x^2} + 2x + 1).2x - (4{x^2} + 2x + 1).1 = 4{x^2}.2x + 2x.2x + 1.2x - 4{x^2} - 2x - 1\\ = 8{x^{2 + 1}} + 4{x^{1 + 1}} + 2x - 4{x^2} - 2x - 1 = 8{x^3} + 4{x^2} + 2x - 4{x^2} - 2x - 1 = 8{x^3} - 1\end{array}\);
e) \(\begin{array}{l}({x^6} - 2{x^4} + {x^2}):( - 2{x^2}) = {x^6}:( - 2{x^2}) - 2{x^4}:( - 2{x^2}) + {x^2}:( - 2{x^2})\\ = - \dfrac{1}{2}{x^{6 - 2}} + {x^{4 - 2}} - \dfrac{1}{2}{x^{2 - 2}} = - \dfrac{1}{2}{x^4} + {x^2} - \dfrac{1}{2}.\end{array}\);
g)
\(({x^5} - {x^4} - 2{x^3}):({x^2} + x)=x^3-2x^2\)
Bài 1:
a) Ta có: \(\dfrac{17}{6}-x\left(x-\dfrac{7}{6}\right)=\dfrac{7}{4}\)
\(\Leftrightarrow\dfrac{17}{6}-x^2+\dfrac{7}{6}x-\dfrac{7}{4}=0\)
\(\Leftrightarrow-x^2+\dfrac{7}{6}x+\dfrac{13}{12}=0\)
\(\Leftrightarrow-12x^2+14x+13=0\)
\(\Delta=14^2-4\cdot\left(-12\right)\cdot13=196+624=820\)
Vì Δ>0 nên phương trình có hai nghiệm phân biệt là:
\(\left\{{}\begin{matrix}x_1=\dfrac{14-2\sqrt{205}}{-24}=\dfrac{-7+\sqrt{205}}{12}\\x_2=\dfrac{14+2\sqrt{2015}}{-24}=\dfrac{-7-\sqrt{205}}{12}\end{matrix}\right.\)
b) Ta có: \(\dfrac{3}{35}-\left(\dfrac{3}{5}-x\right)=\dfrac{2}{7}\)
\(\Leftrightarrow\dfrac{3}{5}-x=\dfrac{3}{35}-\dfrac{10}{35}=\dfrac{-7}{35}=\dfrac{-1}{5}\)
hay \(x=\dfrac{3}{5}-\dfrac{-1}{5}=\dfrac{3}{5}+\dfrac{1}{5}=\dfrac{4}{5}\)
câu a) mình chịu (dùng kiến thức lớp 12 chắc làm đc haha)
b) gt ⇒ \(\frac{1}{6}.6^{x+2}-6^x=6^{14}-6^{13}\)
⇒ \(6^{x+1}-6^x=6^{14}-6^{13}\)
⇒ \(6^x\left(6-1\right)=6^{13}\left(6-1\right)\)
⇒ \(x=13\)
c) gt ⇒ \(\frac{1}{2}.2^{x+4}-2^x=2^{13}-2^{10}\)
⇒ \(2^{x+3}-2^x=2^{13}-2^{10}\)
⇒ \(2^x\left(2^3-1\right)=2^{10}\left(2^3-1\right)\)
⇒ \(x=10\)
d) gt ⇒ \(\frac{1}{3}.3^{x+4}-4.3^x=3^{16}-4.3^{13}\)
⇒ \(3^{x+3}-4.3^x=3^{16}-4.3^{13}\)
⇒ \(3^x\left(3^3-4\right)=3^{13}\left(3^3-4\right)\)
⇒ \(x=13\)
a/ \(\frac{1}{3}.3^x+3^{x+2}=3^{16}+3^{13}\)
\(\Leftrightarrow3^{x-1}+3^{x+2}=3^{13}+3^{16}\)
\(\Leftrightarrow3^{x-1}\left(1+3^3\right)=3^{13}\left(1+3^3\right)\)
\(\Leftrightarrow3^{x-1}=3^{13}\Rightarrow x-1=13\Rightarrow x=14\)
b/ \(\frac{1}{6}6^x+6^{x+2}=6^{15}+6^{18}\)
\(\Leftrightarrow6^{x-1}+6^{x+2}=6^{15}+6^{18}\)
\(\Leftrightarrow6^{x-1}\left(1+6^3\right)=6^{15}\left(1+6^3\right)\)
\(\Rightarrow x=16\)
c/ \(\frac{1}{2}2^{x+3}-2^x=2^{22}-2^{20}\)
\(\Leftrightarrow2^x\left(2^2-1\right)=2^{20}\left(2^2-1\right)\)
\(\Rightarrow x=20\)
b) Ta có: \(5^{x+4}-3\cdot5^{x+3}=2\cdot5^{11}\)
\(\Leftrightarrow2\cdot5^{x+3}=2\cdot5^{11}\)
\(\Leftrightarrow x+3=11\)
hay x=8
c) Ta có: \(2\cdot3^{x+2}+4\cdot3^{x+1}=10\cdot3^6\)
\(\Leftrightarrow18\cdot3^x+12\cdot3^x=10\cdot3^6\)
\(\Leftrightarrow30\cdot3^x=30\cdot3^5\)
Suy ra: x=5
d) Ta có: \(6\cdot8^{x-1}+8^{x+1}=6\cdot8^{19}+8^{21}\)
\(\Leftrightarrow6\cdot\dfrac{8^x}{8}+8^x\cdot8=6\cdot8^{19}+64\cdot8^{19}\)
\(\Leftrightarrow8^x\cdot\dfrac{35}{4}=70\cdot8^{19}\)
\(\Leftrightarrow8^x=8^{20}\)
Suy ra: x=20
a: =>(3/2-2x):2/3=1/6
=>3/2-2x=1/6x2/3=2/18=1/9
=>2x=25/18
hay x=25/36
b: \(\Leftrightarrow2x-2x+\dfrac{5}{2}-2=x-\dfrac{1}{4}\)
=>x-1/4=1/2
=>x=3/4
c: \(\Leftrightarrow2x-\dfrac{2}{3}-\dfrac{1}{3}x+\dfrac{1}{4}x=0\)
=>23/12x=2/3
=>x=8/23
\(a,3-x=x+1,8\)
\(\Rightarrow-x-x=1,8-3\)
\(\Rightarrow-2x=-1,2\)
\(\Rightarrow x=0,6\)
\(b,2x-5=7x+35\)
\(\Rightarrow2x-7x=35+5\)
\(\Rightarrow-5x=40\)
\(\Rightarrow x=-8\)
\(c,2\left(x+10\right)=3\left(x-6\right)\)
\(\Rightarrow2x+20=3x-18\)
\(\Rightarrow2x-3x=-18-20\)
\(\Rightarrow-x=-38\)
\(\Rightarrow x=38\)
\(d,8\left(x-\dfrac{3}{8}\right)+1=6\left(\dfrac{1}{6}+x\right)+x\)
\(\Rightarrow8x-3+1=1+6x+x\)
\(\Rightarrow8x-3=7x\)
\(\Rightarrow8x-7x=3\)
\(\Rightarrow x=3\)
\(e,\dfrac{2}{9}-3x=\dfrac{4}{3}-x\)
\(\Rightarrow-3x+x=\dfrac{4}{3}-\dfrac{2}{9}\)
\(\Rightarrow-2x=\dfrac{10}{9}\)
\(\Rightarrow x=-\dfrac{5}{9}\)
\(g,\dfrac{1}{2}x+\dfrac{5}{6}=\dfrac{3}{4}x-\dfrac{1}{2}\)
\(\Rightarrow\dfrac{1}{2}x-\dfrac{3}{4}x=-\dfrac{1}{2}-\dfrac{5}{6}\)
\(\Rightarrow-\dfrac{1}{4}x=-\dfrac{4}{3}\)
\(\Rightarrow x=\dfrac{16}{3}\)
\(h,x-4=\dfrac{5}{6}\left(6-\dfrac{6}{5}x\right)\)
\(\Rightarrow x-4=5-x\)
\(\Rightarrow x+x=5+4\)
\(\Rightarrow2x=9\)
\(\Rightarrow x=\dfrac{9}{2}\)
\(k,7x^2-11=6x^2-2\)
\(\Rightarrow7x^2-6x^2=-2+11\)
\(\Rightarrow x^2=9\Rightarrow\left[{}\begin{matrix}x=3\\x=-3\end{matrix}\right.\)
\(m,5\left(x+3\cdot2^3\right)=10^2\)
\(\Rightarrow5\left(x+24\right)=100\)
\(\Rightarrow x+24=20\)
\(\Rightarrow x=-4\)
\(n,\dfrac{4}{9}-\left(\dfrac{1}{6^2}\right)=\dfrac{2}{3}\left(x-\dfrac{2}{3}\right)^2+\dfrac{5}{12}\)
\(\Rightarrow\dfrac{2}{3}\left(x-\dfrac{2}{3}\right)^2+\dfrac{5}{12}=\dfrac{4}{9}-\dfrac{1}{36}\)
\(\Rightarrow\dfrac{2}{3}\left(x-\dfrac{2}{3}\right)^2+\dfrac{5}{12}=\dfrac{5}{12}\)
\(\Rightarrow\dfrac{2}{3}\left(x-\dfrac{2}{3}\right)^2=0\)
\(\Rightarrow x-\dfrac{2}{3}=0\Rightarrow x=\dfrac{2}{3}\)
#\(Urushi\text{☕}\)
\(\dfrac{x}{2}+\dfrac{x}{3}-1=\dfrac{1}{6}\Rightarrow3x+2x-6=1\Leftrightarrow5x=7\Leftrightarrow x=\dfrac{7}{5}\)