K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
3 tháng 4

\(\sqrt{x^2-x-1}=\sqrt{x-1}\)

\(\Leftrightarrow\left\{{}\begin{matrix}x-1\ge0\\x^2-x-1=x-1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ge1\\x^2-2x=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ge1\\\left[{}\begin{matrix}x=0\\x=2\end{matrix}\right.\end{matrix}\right.\)

\(\Rightarrow x=2\)

30 tháng 3 2019

Điều kiện xác định:

Xét x = 1: VT (2) = 1; VP (2) = 2.

Vậy x = 1 không phải nghiệm của (2) nên phương trình (2) vô nghiệm.

Vậy phương trình đã cho vô nghiệm.

AH
Akai Haruma
Giáo viên
3 tháng 8 2021

Lời giải:

PT $\Leftrightarrow (x+1)^2+|x+1|-(m+1)=0$

$\Leftrightarrow |x+1|^2+|x+1|-(m+1)=0$

Đặt $|x+1|=t(t\geq 0)$ thì: $t^2+t-(m+1)=0(*)$

Với $m=1$ thì $t^2+t-2=0$

$\Leftrightarrow (t-1)(t+2)=0$

Vì $t\geq 0$ nên $t=1\Leftrightarrow |x+1|=1$

$\Leftrightarrow x+1=\pm 1\Leftrightarrow x=0$ hoặc $x=-2$

Để pt vô nghiệm thì $(*)$ chỉ có nghiệm âm hoặc vô nghiệm.

PT $(*)$ chỉ có nghiệm âm khi \(\left\{\begin{matrix} \Delta (*)=1+4(m+1)\geq 0\\ S=-1< 0\\ P=-(m+1)<0\end{matrix}\right.\Leftrightarrow m>-1\)

Để $(*)$ vô nghiệm khi $\Delta=4m+5< 0$

$\Leftrightarrow m< \frac{-5}{4}$

Vậy $m>-1$ hoặc $m< \frac{-5}{4}$

\(\Leftrightarrow\dfrac{x-1-x^2-x}{x+1}< 0\)

\(\Leftrightarrow\dfrac{x^2+1}{x+1}>0\)

=>x+1>0

hay x>-1

NV
13 tháng 12 2021

ĐKXĐ: \(x\ge1\)

\(\sqrt{x-1}+\sqrt{\left(x-1\right)\left(x+1\right)}=x\sqrt{x}\)

\(\Leftrightarrow\sqrt{x-1}\left(\sqrt{x+1}+1\right)=x\sqrt{x}\)

\(\Leftrightarrow\dfrac{\sqrt{x-1}.x}{\sqrt{x+1}-1}=x\sqrt{x}\)

\(\Leftrightarrow\dfrac{\sqrt{x-1}}{\sqrt{x+1}-1}=\sqrt{x}\)

\(\Leftrightarrow\sqrt{x-1}=\sqrt{x^2+x}-\sqrt{x}\)

\(\Leftrightarrow\sqrt{x-1}+\sqrt{x}=\sqrt{x^2+x}\)

\(\Leftrightarrow2x-1+2\sqrt{x^2-x}=x^2+x\)

\(\Leftrightarrow x^2-x-2\sqrt{x^2-x}+1=0\)

\(\Leftrightarrow\left(\sqrt{x^2-x}-1\right)^2=0\)

\(\Leftrightarrow x^2-x-1=0\)

15 tháng 1 2022

ĐKXĐ:\(x\ne-1\)

\(\dfrac{x-1}{x+1}\le5+x\\ \Leftrightarrow x-1\le\left(x+1\right)\left(5+x\right)\\ \Leftrightarrow x-1\le x^2+6x+5\\ \Leftrightarrow x^2+5x+6\ge0\\ \Leftrightarrow\left[{}\begin{matrix}x\le-3\\x\ge-2\end{matrix}\right.\)