Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Rightarrow x^8-1250x^4+390625-100x^2-1=0\)
\(\Rightarrow x^8-1250x^4-100x^2+390624=0\)
\(\Rightarrow\left(x^2-26\right)\left(x^2-24\right)\left(x^4+50x^2+626\right)=0\)
Vì x4 + 50x2 + 626 > 0
\(\Rightarrow x^2-26=0\Rightarrow x=+-\sqrt{26}\)
hoặc \(x^2-24=0\Rightarrow x=+-\sqrt{24}\)
Vậy pt có 4 nghiệm .............................
\(\frac{X+1}{99}+1+\frac{X+2}{98}+1+\frac{x+3}{97}+1+\frac{X+4}{96}+1=0\)
\(\Leftrightarrow\frac{x+100}{99}+\frac{X+100}{98}+\frac{X+100}{97}+\frac{X+100}{96}=0\Leftrightarrow\left(X+100\right)\times\left(\frac{1}{99}+\frac{1}{98}+\frac{1}{97}+\frac{1}{96}\right)=0 \)\(\Leftrightarrow X+100=0\Leftrightarrow x=-100\)
\(S=\frac{-1+\sqrt{2}}{2-1}+\frac{-\sqrt{2}+\sqrt{3}}{3-2}+...+\frac{-\sqrt{99}+\sqrt{100}}{100-99}\)
\(=-1+\sqrt{2}-\sqrt{2}+\sqrt{3}-....-\sqrt{99}+\sqrt{100}\)
\(=-1+\sqrt{100}\)
\(\hept{\begin{cases}a=\left(x^2-x+1\right)^2\\b=x^2\end{cases}}\)
\(a^2-\left(b+1\right)a+b=0\Leftrightarrow\left(a-1\right)\left(a-b\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}a=1\\a=b\end{cases}\Leftrightarrow}\orbr{\begin{cases}\left(x^2-x+1\right)^2=1\\\left(x^2-x+1\right)^2=x^2\end{cases}}\)(easy)
3(2x+y)-2(3x-2y)=3.19-11.2
6x+3y-6x+4y=57-22
7y=35
y=5
thay vào :
2x+y=19
2x+5=19
2x=14
x=7
2/ x2+21x-1x-21=0
x(x+21)-1(x+21)=0
(x+21)(x-1)=0
TH1 x+21=0
x=-21
TH2 x-1=0
x=1
vậy x = {-21} ; {1}
3/ x4-16x2-4x2+64=0
x2(x2-16)-4(x2-16)=0
(x2-16)-(x2-4)=0
TH1 x2-16=0
x2=16
<=>x=4;-4
TH2 x2-4=0
x2=4
x=2;-2
Bài 1 :
\(\hept{\begin{cases}2x+y=19\\3x-2y=11\end{cases}\Leftrightarrow\hept{\begin{cases}4x+2y=38\\3x-2y=11\end{cases}\Leftrightarrow\hept{\begin{cases}7x=49\\2x+y=19\end{cases}}}}\)
\(\Leftrightarrow\hept{\begin{cases}x=7\\2x+y=19\end{cases}}\)Thay vào x = 7 vào pt 2 ta được :
\(14+y=19\Leftrightarrow y=5\)Vậy hệ pt có một nghiệm ( x ; y ) = ( 7 ; 5 )
Bài 2 :
\(x^2+20x-21=0\)
\(\Delta=400-4\left(-21\right)=400+84=484\)
\(x_1=\frac{-20-22}{2}=-24;x_2=\frac{-20+22}{2}=1\)
Bài 3 : Đặt \(x^2=t\left(t\ge0\right)\)
\(t^2-20t+64=0\)
\(\Delta=400+4.64=656\)
\(t_1=\frac{20+4\sqrt{41}}{2}\left(tm\right);t_2=\frac{20-4\sqrt{41}}{2}\left(ktm\right)\)
Theo cách đặt : \(x^2=\frac{20+4\sqrt{41}}{2}\Rightarrow x=\sqrt{\frac{20+4\sqrt{41}}{2}}=\frac{\sqrt{20\sqrt{2}+4\sqrt{82}}}{2}\)
a: =>(x^2+x)^2-2(x^2+x)+(x^2+x)-2=0
=>(x^2+x-2)(x^2+x+1)=0
=>(x+2)(x-1)=0
=>x=-2 hoặc x=1
b: ĐKXĐ: x<>4; x<>1
PT =>\(\dfrac{x+3+3x-12}{x-4}=\dfrac{6}{1-x}\)
=>(4x-9)(1-x)=6(x-4)
=>4x-4x^2-9+9x=6x-24
=>-4x^2+13x-9-6x+24=0
=>-4x^2+7x+15=0
=>x=3(nhận) hoặc x=-5/4(nhận)
Bài 1: ĐKXĐ: $2\leq x\leq 4$
PT $\Leftrightarrow (\sqrt{x-2}+\sqrt{4-x})^2=2$
$\Leftrightarrow 2+2\sqrt{(x-2)(4-x)}=2$
$\Leftrightarrow (x-2)(4-x)=0$
$\Leftrightarrow x-2=0$ hoặc $4-x=0$
$\Leftrightarrow x=2$ hoặc $x=4$ (tm)
Bài 2:
PT $\Leftrightarrow 4x^3(x-1)-3x^2(x-1)+6x(x-1)-4(x-1)=0$
$\Leftrightarrow (x-1)(4x^3-3x^2+6x-4)=0$
$\Leftrightarrow x=1$ hoặc $4x^3-3x^2+6x-4=0$
Với $4x^3-3x^2+6x-4=0(*)$
Đặt $x=t+\frac{1}{4}$ thì pt $(*)$ trở thành:
$4t^3+\frac{21}{4}t-\frac{21}{8}=0$
Đặt $t=m-\frac{7}{16m}$ thì pt trở thành:
$4m^3-\frac{343}{1024m^3}-\frac{21}{8}=0$
$\Leftrightarrow 4096m^6-2688m^3-343=0$
Coi đây là pt bậc 2 ẩn $m^3$ và giải ta thu được \(m=\frac{\sqrt[3]{49}}{4}\) hoặc \(m=\frac{-\sqrt[3]{7}}{4}\)
Khi đó ta thu được \(x=\frac{1}{4}(1-\sqrt[3]{7}+\sqrt[3]{49})\)
\(|x-99|^{100}+|x-100|^{101}=1\)
* Nếu \(x=99\)\(\Rightarrow\) \(|99-99|^{100}+|99-100|^{101}=0+1=1\)( đúng )
\(\Rightarrow x=99\)là một nghiệm của phương trình
* Nếu \(x=100\)\(\Rightarrow|100-99|^{100}+|100-100|^{101}=1+0=1\)( đúng )
\(\Rightarrow x=100\)là một nghiệm của phương trình
* Nếu \(x< 99\)\(\Rightarrow x-100< 99-100\)\(\Rightarrow x-100< -1\)
\(\Rightarrow|x-100|^{101}>1\)\(\Leftrightarrow|x-99|^{100}+|x-100|^{101}>1\)\(\Rightarrow\)Phương trình vô nghiệm
* Nếu \(x>100\)\(\Rightarrow x-99>100-99\)\(\Rightarrow x-99>1\)
\(\Rightarrow|x-99|^{100}>1\)\(\Rightarrow|x-99|^{100}+|x-100|^{101}>1\)\(\Rightarrow\)Phương trình vô nghiệm
* Nếu \(99< x< 100\)\(\Rightarrow99-99< x-99< 100-99\)\(\Rightarrow0< x-99< 1\)
\(\Rightarrow|x-99|=x-99\)\(\left(1\right)\)
Cũng có : \(99< x< 100\)\(\Rightarrow99-100< x-100< 100-100\)\(\Rightarrow-1< x-100< 0\)
\(\Rightarrow|x-100|=-x+100\)\(\left(2\right)\)
Từ \(\left(1\right)\)và \(\left(2\right)\)\(\Rightarrow|x-99|+|x-100|=x-99-x+100\)
\(\Rightarrow|x-99|+|x-100|=1\)
Ta lại có : \(|x-99|^{100}< |x-99|\)Do( \(0< |x-99|< 1\))
\(|x-100|^{101}< |x-100|\)Do ( \(0< |x-100|< 1\)
\(\Rightarrow|x-99|^{100}+|x-100|^{101}< |x-99|+|x-100|\)
\(\Rightarrow|x-99|^{100}+|x-100|^{101}< 1\)
\(\Leftrightarrow\)Phương trình vô nghiệm
Vậy phương trình có hai nghiệm duy nhất là \(x\in\left\{99;100\right\}\)
Bạn ơi bạn chia trường hợp kiểu gì vậy , với cả trường hợp cuối mình không hiểu gì đâu bạn ơi
Do VT là tổng của các giá trị tuyệt đối nên \(\ge0\Rightarrow100x\ge0\Rightarrow x\ge0\)
\(PT\Leftrightarrow\left(x+x+x+...+x\right)+\left(1+2+3+...+99\right)=100x\) (có 99x số x)
\(\Leftrightarrow99x+4950=100x\Leftrightarrow100x-99x=x=4950\)
Vậy \(x=4950\)
Dễ thấy \(x\ge0\)
\(\Rightarrow x+1+x+2+x+3+...+x+99=100x\)