K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 7

Ta có \(\left(x-y\right)^2\ge0;\left(y-z\right)^2\ge0;\left(z-1\right)^2\ge0\)

Để bth bằng 0 

=> \(\left\{{}\begin{matrix}\left(x-y\right)^2=0\\\left(y-z\right)^2=0\\\left(z-1\right)^2=0\end{matrix}\right.\Rightarrow x=y=z=1\)

22 tháng 7 2016

b) x/3=y/4; y/5=z/7 va 2x+ 3y- z= 186 
Ta có 
x/3=y/4 <=> x/15=y/20 (1) 
y/5=z/7 <=> y/20=z/28 (2) 
Từ (1) và (2) suy ra 
x/15=y/20=z/28 
<=> 2x/30=3y/60=z/28 = (2x+3y-z)/(30+60-28) = 186/62 = 3 
Vậy: 
x=3.15=45 
y=3.20=60 
z=3.28=84 

21 tháng 7 2016

Ko bít làm!

ai biet j,glhfmgxnfcvgkul

2 tháng 8 2016

giống tui

14 tháng 12 2017

bạn ơi đề thiếu

1: \(\dfrac{x-1}{3}=\dfrac{y-2}{4}=\dfrac{z+7}{5}\)

mà x+y-z=8

nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x-1}{3}=\dfrac{y-2}{4}=\dfrac{z+7}{5}=\dfrac{x-1+y-2-z-7}{3+4-5}=\dfrac{8-3-7}{2}=\dfrac{-2}{2}=-1\)

=>\(\left\{{}\begin{matrix}x-1=-1\cdot3=-3\\y-2=-1\cdot4=-4\\z+7=-1\cdot5=-5\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x=-2\\y=-2\\z=-12\end{matrix}\right.\)

2: \(\dfrac{x+1}{3}=\dfrac{y+2}{-4}=\dfrac{z-3}{5}\)

mà 3x+2y=47-42=5

nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x+1}{3}=\dfrac{y+2}{-4}=\dfrac{z-3}{5}=\dfrac{3x+3+2y+4}{3\cdot3+2\left(-4\right)}=\dfrac{5+7}{9-8}=12\)

=>\(\left\{{}\begin{matrix}x+1=12\cdot3=36\\y+2=-12\cdot4=-48\\z-3=12\cdot5=60\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x=35\\y=-48-2=-50\\z=60+3=63\end{matrix}\right.\)

7 tháng 10 2016

a, \(\frac{x}{19}=\frac{y}{5}=\frac{z}{95}\); 5x-y-z=-10

biến đổi: 
\(\frac{x}{19}=\frac{5x}{95}\)

=> \(\frac{x}{19}=\frac{y}{5}=\frac{z}{95}\)

(=) \(\frac{5x}{95}=\frac{y}{5}=\frac{z}{95}\)

= \(\frac{5x-y-z}{95-5-95}\)

= \(\frac{-10}{-5}=2\)

* \(\frac{x}{19}=2\)=> \(x=19.2=38\)

* \(\frac{y}{5}=2\)=> \(y=2.5=10\)

* \(\frac{z}{95}=2\)=> \(z=95.2=190\)

7 tháng 10 2016

nè Khoa ơi câu b có đề ko zợ?