Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
$\frac{x-2024}{4}=\frac{1}{x-2024}$ (điều kiện: $x\neq 2024$)
$\Rightarrow (x-2024)^2=4.1=4=2^2=(-2)^2$
$\Rightarrow x-2024=2$ hoặc $x-2024=-2$
$\Rightarrow x=2026$ hoặc $x=2022$
Lần sau bạn lưu ý gõ đề bằng công thức toán (biểu tượng $\sum$ góc trái khung soạn thảo) để mọi người hiểu đề của bạn hơn nhé.
\(A=\dfrac{2024^{2023}+1}{2024^{2024}+1}\)
\(2024A=\dfrac{2024^{2024}+2024}{2024^{2024}+1}=\dfrac{\left(2024^{2024}+1\right)+2023}{2024^{2024}+1}=\dfrac{2024^{2024}+1}{2024^{2024}+1}+\dfrac{2023}{2024^{2024}+1}=1+\dfrac{2023}{2024^{2024}+1}\)
\(B=\dfrac{2024^{2022}+1}{2024^{2023}+1}\)
\(2024B=\dfrac{2024^{2023}+2024}{2024^{2023}+1}=\dfrac{\left(2024^{2023}+1\right)+2023}{2024^{2023}+1}=\dfrac{2024^{2023}+1}{2024^{2023}+1}+\dfrac{2023}{2024^{2023}+1}=1+\dfrac{2023}{2024^{2023}+1}\)
Vì \(2024>2023=>2024^{2024}>2024^{2023}\)
\(=>2024^{2024}+1>2024^{2023}+1\)
\(=>\dfrac{2023}{2024^{2023}+1}>\dfrac{2023}{2024^{2024}+1}\)
\(=>A< B\)
\(#PaooNqoccc\)
\(x+\left(x+1\right)+\left(x+2\right)+...+2023+2024=2024\)
\(\Rightarrow2023x+4090506=2024-2024-20232023\)
\(\Rightarrow x+4090506=-2023\)
\(\Rightarrow2023x=-2023-4090506\)
\(\Rightarrow2023x=-4092529\)
\(\Rightarrow x=-2023\).
a) \(2023^{2024}\) và \(2023^{2023}\)
vì 2024 > 2023 nên 20232024 > 20232023
Vậy 20232024 > 20232023
b) \(17^{2024}\) và \(18^{2024}\)
vì 17 < 18 nên 172024 < 18 2024
Vậy 172024 < 182024
\(\left(x-5\right)^{2022}=\left(x-5\right)^{2024}\\ \Rightarrow\left(x-5\right)^{2022}-\left(x-5\right)^{2024}=0\\ \Rightarrow\left(x-5\right)^{2022}\left[1-\left(x-5\right)^2\right]=0\\ \Rightarrow\left[{}\begin{matrix}\left(x-5\right)^{2022}=0\\1-\left(x-5\right)^2=0\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x-5=0\\\left(x-5\right)^2=1\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=5\\\left(x-5\right)^2=\left(\pm1\right)^2\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=5\\x=6\\x=4\end{matrix}\right.\)
`#3107.101107`
\(\left(x-5\right)^{2022}=\left(x-5\right)^{2024}\)
\(\Rightarrow\left(x-5\right)^{2022}-\left(x-5\right)^{2024}=0\\ \Rightarrow\left(x-5\right)^{2022}\cdot\left[1-\left(x-5\right)^2\right]=0\\ \Rightarrow\left[{}\begin{matrix}\left(x-5\right)^{2022}=0\\1-\left(x-5\right)^2=0\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x-5=0\\\left(x-5\right)^2=1\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=5\\\left(x-5\right)^2=\left(\pm1\right)^2\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=5\\x-5=1\\x-5=-1\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=5\\x=6\\x=4\end{matrix}\right.\)
Vậy, \(x\in\left\{4;5;6\right\}.\)
`(x-5)^2024=(2024^2025*2025^2024)^0`
`=>(x-5)^2024=1`
`=>(x-5)^2024=1^2024`
`TH1:x-5=1`
`=>x=5+1`
`=>x=6`
`TH2:x-5=-1`
`=>x=-1+5`
`=>x=4`