K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 7 2018

\(\left(1+\sqrt{1993}\right).\sqrt{1994-2\sqrt{1993}}\)

\(=\left(1+\sqrt{1993}\right).\sqrt{\left(\sqrt{1993}\right)^2-2.\sqrt{1993}+1}\)

\(=\left(1+\sqrt{1993}\right).\sqrt{\left(\sqrt{1993}-1\right)^2}\)

\(=\left(1+\sqrt{1993}\right).\left(\sqrt{1993}-1\right)\)

\(=1992\)

ai tích mình mình tích lại cho

15 tháng 9 2015

nếu ko : tìm ssoos tận cx

nếu có thì cm cái coi

20 tháng 10 2016

Ta gán : \(1992\rightarrow D\)\(1992\rightarrow A\)

\(D=D+1:A=D.\sqrt[D]{A}\)

CALC , bấm liên tiếp dấu "=" cho đến khi D = 2013 thì dừng.

Sau đó bấm \(\frac{Ans}{D}\) sẽ ra kết quả cần tính.

6 tháng 1 2016

de thi hoc ki cua tui day

6 tháng 1 2016

tui ko bít làm 

mới hok lớp 7 làm được chết liền

12 tháng 8 2018

Ta có: \(M=\sqrt{\left(1993-x\right)^2}+\sqrt{\left(1994-x\right)^2}>0\)

ĐKXĐ: \(\sqrt{\left(1993-x\right)^2}\ge0,\sqrt{\left(1994-x\right)^2}\ge0\forall x\inℝ\)

\(M=|1993-x|+|1994-x|\)

Ta có: GTNN của \(\sqrt{\left(1993-x\right)^2}=0\left(\sqrt{\left(1993-x\right)^2}\ge0\right)\)

GTNN của \(\sqrt{\left(1994-x\right)^2}=0\left(\sqrt{\left(1994-x\right)^2}\ge0\right)\)

=> GTNN của \(M=|1993-1994|hay|1994-1993|=1\)

9 tháng 2 2020

Ta có: M = \(\sqrt{\left(1993-x\right)^2}+\sqrt{\left(1994-x\right)^2}\)

\(\Leftrightarrow\)M = \(\left|1993-x\right|+\left|1994-x\right|\)

              = \(\left|x-1993\right|+\left|1994-x\right|\)

              \(\ge\left|x-1993+1994-x\right|\)\(=\left|1\right|\)= 1

\(\Rightarrow M\ge1\)

Dấu "=" xảy ra khi: \(\left(x-1993\right)\left(1994-x\right)\ge0\)

                              \(\Leftrightarrow\hept{\begin{cases}x-1993\ge0\\1994-x\ge0\end{cases}}\)

                                \(\Leftrightarrow\hept{\begin{cases}x\ge1993\\x\le1994\end{cases}}\)

                                  \(\Leftrightarrow1993\le x\le1994\)

Vậy: min M = 1  \(\Leftrightarrow1993\le x\le1994\)

8 tháng 7 2016

\(\sqrt{\left(1-\sqrt{1993}\right)^2}.\sqrt{1994+2.1993}=\sqrt{\left(1-\sqrt{1993}\right)^2}.\sqrt{\left(\sqrt{1993}+1\right)^2}=\left(\sqrt{1993}-1\right)\left(\sqrt{1993}+1\right)=1993-1=1992\)

28 tháng 8 2020

Ta có:\(A=1+19^{19}+93^{199}+1993^{1994}\)

Dễ thấy:

\(19^2\equiv1\left(mod10\right)\Rightarrow19^{18}\equiv1\left(mod10\right)\Rightarrow19^{19}\equiv9\left(mod10\right)\)

\(93^4\equiv1\left(mod10\right)\Rightarrow93^{196}\equiv1\left(mod10\right)\Rightarrow93^{199}\equiv7\left(mod10\right)\)

\(1993\equiv3\left(mod10\right)\Rightarrow1993^4\equiv1\left(mod10\right)\Rightarrow1993^{1992}\equiv1\left(mod10\right)\Rightarrow1993^{1994}\equiv9\left(mod10\right)\)

\(\Rightarrow1+19^{19}+93^{199}+1993^{1994}\equiv1+9+7+9\equiv6\left(mod10\right)\)

Cho bạn 1 ý tưởng làm bài này nhưng không khả thi lắm :v