K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 8 2020

Ta có:\(A=1+19^{19}+93^{199}+1993^{1994}\)

Dễ thấy:

\(19^2\equiv1\left(mod10\right)\Rightarrow19^{18}\equiv1\left(mod10\right)\Rightarrow19^{19}\equiv9\left(mod10\right)\)

\(93^4\equiv1\left(mod10\right)\Rightarrow93^{196}\equiv1\left(mod10\right)\Rightarrow93^{199}\equiv7\left(mod10\right)\)

\(1993\equiv3\left(mod10\right)\Rightarrow1993^4\equiv1\left(mod10\right)\Rightarrow1993^{1992}\equiv1\left(mod10\right)\Rightarrow1993^{1994}\equiv9\left(mod10\right)\)

\(\Rightarrow1+19^{19}+93^{199}+1993^{1994}\equiv1+9+7+9\equiv6\left(mod10\right)\)

Cho bạn 1 ý tưởng làm bài này nhưng không khả thi lắm :v

16 tháng 12 2018

Mỗi phần tử của A đều chia hết cho 3

nên A chia hết cho 3 và lớn hơn 3 nên là hợp số

b, Các phần tử của A đều chia hết cho 9 ngoại trừ 3

=> A KHÔNG CHIA HẾT CHO 9. Vì A ko chia hết cho 9 mà chia hết cho 3

nên không là số chính phương

12 tháng 9 2016

Gọi UCLN của a-c và b-c là d 
mà a; b; c là 3 số đôi một nguyên tố cùng nhau nên d = 1
Do đó a-c và b-c là hai số chính phương. Đặt a-c = p2; b-c = q2
( p; q là các số nguyên)
c2 = p2q2c = pq  a+b = (a- c) + (b – c) + 2c = ( p+ q)2 là số chính phương

tích mik nhé

12 tháng 9 2016

Cho các số nguyên dương a;b;c đôi một nguyên tố cùng nhau, thỏa mãn: (a+b)c=ab.

Xét tổng M=a+b có phải là số chính phương không ? Vì sao?
 

\

Gọi UCLN của a-c và b-c là d 
mà a; b; c là 3 số đôi một nguyên tố cùng nhau nên d = 1
Do đó a-c và b-c là hai số chính phương. Đặt a-c = p2; b-c = q2
( p; q là các số nguyên)
c2 = p2q2c = pq  a+b = (a- c) + (b – c) + 2c = ( p+ q)2 là số chính phương

24 tháng 6 2019

#) Giải

Giả sử tồn tại x, y, z thỏa mãn đk đầu bài => 1 / x + 1 / y = 1 / z (x, y, z ≠ 0) 
=> z(x + y) = xy 
Không thể có |z| > 1 vì lúc đó z có ít nhất 1 ước nguyên tố p ≥ 2 => p phải là ước của x hoặc y, vô lý vì (x, z) = (y, z) = 1. Vậy z = -1, 1 
Với z = -1 => -(x + y) = xy => (x + 1)(y + 1) = 1 => x + 1 = -1, y + 1 = -1 
=> x = y = -2 => x, y có chung ước 2, vô lý vì (x, y) = 1 
Với z = 1 => x + y = xy => (x - 1)(y - 1) = 1 
=> x - 1 = 1 và y - 1 = 1 => x = y = 2, vô lý vì (x, y) = 1 
Vậy không tồn tại x, y, z thỏa đk bài toán 

~ Hok tốt ~

kham khảo ở đây nha

Giải toán trên mạng - Giúp tôi giải toán - Hỏi đáp, thảo luận về toán học - Học toán với OnlineMath

vào thống kê hỏi đáp của mình nhấn zô chữ xanh trong câu trả lời này 

hc tốt ~:B~

31 tháng 5 2016

Đặt a1=14;a2=144;a3=1444;an=144..4, ta xét các trường hợp a, n<4.

Ta dễ dàng thấy a1=14 không phải là số chính phương và a2=144=122 ; a3=1444=382 là các số chính phương.

b,n>4

Ta có : an=144..4=10000b+4444(bεZ) 

Vì 10000:16 và 4444 chia 16 dư 12 nên an chia 16 dư 12

Giả sử an=(4k+2)2=16(k2+k)+4=>an chia 16 dư 4. Vô lý.

Vậy an không phải là số chính phương.

Kết luận : Trong dãy số tự nhiên an=144..4,, chỉ có a2=144 và a3=1444 là các số chính phương

28 tháng 5 2016

hổng biết nha bạn

m cx đng cần gấp 

15 tháng 9 2016

Gọi ƯCLN của a‐c và b‐c là d

Mà a; b; c là 3 số đôi một nguyên tố cùng nhau nên d = 1

Do đó a‐c và b‐c là hai số chính phương. Đặt a‐c = p2; b‐c = q2

﴾ p; q là các số nguyên﴿

c2 = p2q2c = pq a+b = ﴾a‐ c﴿ + ﴾b – c﴿ + 2c = ﴾ p+ q﴿2 là số chính phương.

28 tháng 5 2016

bài toán trên online math bạn tự tìm hiểu