Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(x^4-13x^2+36=0\)
\(\Leftrightarrow\left(x-3\right)\left(x-2\right)\left(x+2\right)\left(x+3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=2\\x=-2\\x=-3\end{matrix}\right.\)
b) \(5x^4+3x^2-8=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+1\right)\left(5x^2+8\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-1\end{matrix}\right.\)( do \(5x^2+8\ge8>0\))
c: Ta có: \(2x^4+3x^2+2=0\)
Đặt \(a=x^2\)
Phương trình tương đương là: \(2a^2+3a+2=0\)
\(\text{Δ}=3^2-4\cdot2\cdot2=9-16=-7\)
Vì Δ<0 nên phương trình vô nghiệm
Vậy: Phương trình \(2x^4+3x^2+2=0\) vô nghiệm
Lời giải:
ĐKXĐ: $x>0$
PT $\Rightarrow x+\sqrt{x(x+1)}=1$
$\Leftrightarrow \sqrt{x(x+1)}=1-x$
\(\Rightarrow \left\{\begin{matrix} 1-x\geq 0\\ x(x+1)=(1-x)^2\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x\leq 1\\ 3x=1\end{matrix}\right.\Rightarrow x=\frac{1}{3}\) (thỏa đkxđ)
\(x-\frac{2x+1}{2}-\frac{x+2}{3}>11\)
\(\Leftrightarrow\frac{6x}{6}-\frac{3.\left(2x+1\right)}{6}-\frac{2.\left(x+2\right)}{6}>11\)
\(\Leftrightarrow\frac{6x-6x-3-2x-4}{6}>11\)
\(\Leftrightarrow\frac{-2x-7}{6}>11\)
\(\Leftrightarrow-2x-7>66\)
\(\Leftrightarrow-2x>73\)
\(\Leftrightarrow x< \frac{-73}{2}\)
\(\sqrt{3-\sqrt{3+x}}=x\)
3-\(\sqrt{3+x}\)=x2
3+x-\(\sqrt{3+x}\)+\(\frac{1}{4}\)=x2+x+\(\frac{1}{4}\)
(\(\sqrt{3+x}\)-\(\frac{1}{4}\))2=(x+\(\frac{1}{2}\))2
\(\Leftrightarrow\orbr{\begin{cases}\sqrt{3+x}-\frac{1}{2}=x+\frac{1}{2}\\\sqrt{3+x}-\frac{1}{2}=-x-\frac{1}{2}\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}\sqrt{3+x}=x+1\\\sqrt{3+x}=-x\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}3+x=x^2+2x+1\\3+x=x^2\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x^2+x-2=0\\x^2-x+\frac{1}{4}=\frac{13}{4}\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}\left(x-1\right)\left(x+2\right)=0\\\left(x-\frac{1}{2}\right)^2=\frac{13}{4}\end{cases}}\)
chac ban tu lam dc phan con lai va tu xet dkxd nha
Đặt \(x^2=t\left(t\ge0\right)\) khi đó pt tương đương với
\(t^2+\left(\sqrt{2}+1\right)t-\left(\sqrt{2}+2\right)\)
\(\Delta=\left(\sqrt{2}+1\right)^2+4\left(\sqrt{2}+2\right)\)\(=11+6\sqrt{2}\)
Ta thấy denta lớn hơn 0 nên có 2 nghiệm phân biệt là
\(t_1=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-\left(\sqrt{2}+1\right)+\sqrt{11+6\sqrt{2}}}{2}=1\)
\(t_2=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-\left(\sqrt{2}+1\right)-\sqrt{11+6\sqrt{2}}}{2}=-2-\sqrt{2}\left(ktmđk\right)\)
Ta có: \(t_1=1\Leftrightarrow\left[\begin{matrix}x_1=1\\x_2=-1\end{matrix}\right.\)
Vậy pt đã cho có 2 nghiệm là 1 và -1
nên tang vào toàn math thi giải tốt hơn bạn