Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, (x-1)(x-3)+11
=x2-3x-x+3+11
=(x-2)2+10
Vì..................................
b,5-4x2+4x
=-(4x2-4x+4)+9
=-(2x-2)2+9
...........................................................
I zì:vv
a) Ta có: \(A=4x^2+4x+11=4x^2+4x+1=10=\left(2x+1\right)^2+10\ge10\forall x\)
Vậy MinA=10 khi \(x=-\dfrac{1}{2}\)
b) Ta có: \(B=5-8x-x^2=-\left(x^2+8x-5\right)=-\left(x^2+8x+16-21\right)\)
\(=-\left(x+4\right)^2+21\le21\forall x\)
Vậy MaxB=21 khi x=-4
a a= -4x^2-4x+3
để a lơn nhất thì
\(-4x^2-4x\ge0\\ \Leftrightarrow4x^2+4x\le0\\ \Leftrightarrow x^2+x\le0\\ \Leftrightarrow x\left(x+1\right)\le0\)
a lớn nhất thì x(x+1)=0 khi đó \(\orbr{\begin{cases}x=0\\x=-1\end{cases}}\)thì a đạt giá trị lớn nhất là 3
1:
a: =x^2-7x+49/4-5/4
=(x-7/2)^2-5/4>=-5/4
Dấu = xảy ra khi x=7/2
b: =x^2+x+1/4-13/4
=(x+1/2)^2-13/4>=-13/4
Dấu = xảy ra khi x=-1/2
e: =x^2-x+1/4+3/4=(x-1/2)^2+3/4>=3/4
Dấu = xảy ra khi x=1/2
f: x^2-4x+7
=x^2-4x+4+3
=(x-2)^2+3>=3
Dấu = xảy ra khi x=2
2:
a: A=2x^2+4x+9
=2x^2+4x+2+7
=2(x^2+2x+1)+7
=2(x+1)^2+7>=7
Dấu = xảy ra khi x=-1
b: x^2+2x+4
=x^2+2x+1+3
=(x+1)^2+3>=3
Dấu = xảy ra khi x=-1
a) Ta có: \(Q=-x^2-y^2+4x-4y+2=-\left(x^2+y^2-4x+4y-2\right)\)
\(=-\left(x^2-4x+4+y^2+4y+4\right)+10\)
\(=-\left[\left(x-2\right)^2+\left(y+2\right)^2\right]+10\le10\forall x,y\)
Vậy MaxQ=10 khi x=2, y=-2
b) +Ta có: \(A=-x^2-6x+5=-\left(x^2+6x-5\right)=-\left(x^2+6x+9-14\right)\)
\(=-\left(x^2+6x+9\right)+14=-\left(x+3\right)^2+14\le14\forall x\)
Vậy MaxA=14 khi x=-3
+Ta có: \(B=-4x^2-9y^2-4x+6y+3=-\left(4x^2+9y^2+4x-6y-3\right)\)
\(=-\left(4x^2+4x+1+9y^2-6y+1-5\right)\)
\(=-\left[\left(2x+1\right)^2+\left(3y-1\right)^2\right]+5\le5\forall x,y\)
Vậy MaxB=5 khi x=-1/2, y=1/3
c) Ta có: \(P=x^2+y^2-2x+6y+12=x^2-2x+1+y^2+6y+9+2\)
\(=\left(x-1\right)^2+\left(y+3\right)^2+2\ge2\forall x,y\)
Vậy MinP=2 khi x=1, y=-3
\(D=-x^2+6x-11\)
\(D=-\left(x^2-6x+9\right)-2\)
\(D=-\left(x-3\right)^2-2\)
\(\le-2\)
Dấu "=" xảy ra khi \(x=3\)
\(E=5-8x-x^2\)
\(E=-\left(x^2-8x+16\right)+21\)
\(E=-\left(x-4\right)^2+21\)
\(\le21\)
Dấu "=" xảy ra khi \(x=4\)
Để A = 5 - 4x2 + 4 nhận giá trị lớn nhất
=> 4x2 nhỏ nhất mà x2 ≥ 0 ∀ x
=> 4x2 ≥ 0 mà 4x2 nhỏ nhất => 4x2 = 0
<=> x2 = 0 => x = 0
Khi đó : A = 5 - 0 + 4 = 9
Vậy A nhận giá trị nhỏ nhất là 9 <=> x = 0
Để ( x - 1 ) . ( x - 3 ) + 11 nhận giá trị nhỏ nhất
=> x - 1 và x - 3 trái dấu mà x - 1 > x - 3 ∀ x
\(\Rightarrow\orbr{\begin{cases}x-1>0\\x-3< 0\end{cases}}\Rightarrow\orbr{\begin{cases}x>-1\\x< 3\end{cases}}\)
=> x ∈ { 0 ; 1 ; 2 }
Ta xét các 3 trường hợp :
+) x = 0 => B = 14
+) x = 1 => B = 11
+) x = 2 => B = 10
Vậy B nhận giá trị nhỏ nhất là 10 <=> x = 2
a) \(A=x^2-3x-x+3+11\)
\(=\left(x^2-4x+4\right)+10\)
\(=\left(x-2\right)^2+10\ge10\forall x\in R\)
Dấu "=" xảy ra<=> \(\left(x-2\right)^2=0\Leftrightarrow x=2\)
b) \(B=5-4x^2+4x\)
\(=-\left(4x^2-4x+1\right)+6\)
\(=-\left(2x-1\right)^2+6\le6\forall x\in R\)
Dấu "=" xảy ra<=> \(-\left(2x-1\right)^2=0\Leftrightarrow2x=1\Leftrightarrow x=\frac{1}{2}\)
c) \(C=\left(x^2-3x+1\right)\left(x^2-3x-1\right)\)
\(=\left(x^2-3x\right)^2-1\ge-1\forall x\in R\)
Dấu "=" xảy ra<=>\(\left(x^2-3x\right)^2=0\Leftrightarrow x\left(x-3\right)=0\Leftrightarrow x=0;x=3\)
Ta có:
\(Q=\dfrac{1}{x^2-4x+11}=\dfrac{1}{\left(x^2-4x+4\right)+7}\\ =\dfrac{1}{\left(x-2\cdot x\cdot2+2^2\right)+7}=\dfrac{1}{\left(x-2\right)^2+7}\)
\(\left(x-2\right)^2\ge0\forall x=>\left(x-2\right)^2+7\ge7\forall x\\ =>Q=\dfrac{1}{\left(x-2\right)^2+7}\le\dfrac{1}{7}\forall x\)
Dấu "=" xảy ra: `x-2=0<=>x=2`