K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 3 2021

ĐKXĐ : -1 ≤ x ≤ 3

Bình phương hai vế

<=> x + 1 = x2 - 6x + 9 

<=> x2 - 7x + 8 = 0

Δ = b2 - 4ac = (-7)2 - 4.8 = 49 - 32 = 17

Δ > 0, áp dụng công thức nghiệm thu được \(\hept{\begin{cases}x_1=\frac{7+\sqrt{17}}{2}\left(ktm\right)\\x_2=\frac{7-\sqrt{17}}{2}\left(tm\right)\end{cases}}\)

Vậy pt có nghiệm  \(x=\frac{7-\sqrt{17}}{2}\)

AH
Akai Haruma
Giáo viên
29 tháng 4 2023

Bài 1: ĐKXĐ: $2\leq x\leq 4$
PT $\Leftrightarrow (\sqrt{x-2}+\sqrt{4-x})^2=2$

$\Leftrightarrow 2+2\sqrt{(x-2)(4-x)}=2$
$\Leftrightarrow (x-2)(4-x)=0$

$\Leftrightarrow x-2=0$ hoặc $4-x=0$

$\Leftrightarrow x=2$ hoặc $x=4$ (tm)

AH
Akai Haruma
Giáo viên
29 tháng 4 2023

Bài 2:
PT $\Leftrightarrow 4x^3(x-1)-3x^2(x-1)+6x(x-1)-4(x-1)=0$

$\Leftrightarrow (x-1)(4x^3-3x^2+6x-4)=0$
$\Leftrightarrow x=1$ hoặc $4x^3-3x^2+6x-4=0$

Với $4x^3-3x^2+6x-4=0(*)$

Đặt $x=t+\frac{1}{4}$ thì pt $(*)$ trở thành:
$4t^3+\frac{21}{4}t-\frac{21}{8}=0$

Đặt $t=m-\frac{7}{16m}$ thì pt trở thành:

$4m^3-\frac{343}{1024m^3}-\frac{21}{8}=0$
$\Leftrightarrow 4096m^6-2688m^3-343=0$

Coi đây là pt bậc 2 ẩn $m^3$ và giải ta thu được \(m=\frac{\sqrt[3]{49}}{4}\) hoặc \(m=\frac{-\sqrt[3]{7}}{4}\)

Khi đó ta thu được \(x=\frac{1}{4}(1-\sqrt[3]{7}+\sqrt[3]{49})\)

 

11 tháng 1 2022
Not biếtmdnhdhd
11 tháng 1 2022

Hummmm

31 tháng 10 2016

Bài 1:

Đặt \(\hept{\begin{cases}S=x+y\\P=xy\end{cases}}\) hpt thành:

\(\hept{\begin{cases}S^2-P=3\\S+P=9\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}S^2-P=3\\S=9-P\end{cases}}\Leftrightarrow\left(9-P\right)^2-P=3\)

\(\Leftrightarrow\orbr{\begin{cases}P=6\Rightarrow S=3\\P=13\Rightarrow S=-4\end{cases}}\).Thay 2 trường hợp S và P vào ta tìm dc

\(\hept{\begin{cases}x=3\\y=0\end{cases}}\)\(\hept{\begin{cases}x=0\\y=3\end{cases}}\)

1 tháng 11 2016

Câu 3: ĐK: \(x\ge0\)

Ta thấy \(x-\sqrt{x-1}=0\Rightarrow x=\sqrt{x-1}\Rightarrow x^2-x+1=0\) (Vô lý), vì thế \(x-\sqrt{x-1}\ne0.\)

Khi đó \(pt\Leftrightarrow\frac{3\left[x^2-\left(x-1\right)\right]}{x+\sqrt{x-1}}=x+\sqrt{x-1}\Rightarrow3\left(x-\sqrt{x-1}\right)=x+\sqrt{x-1}\)

\(\Rightarrow2x-4\sqrt{x-1}=0\)

Đặt \(\sqrt{x-1}=t\Rightarrow x=t^2+1\Rightarrow2\left(t^2+1\right)-4t=0\Rightarrow t=1\Rightarrow x=2\left(tm\right)\)

3 tháng 2 2021

\(\sqrt{x-4\sqrt{x-1}+3}+\sqrt{x-6\sqrt{x-1}+8}=1\\ < =>\sqrt{x-1-2\sqrt{x-1}.2+4}+\sqrt{x-1-2\sqrt{x-1}.3+9}=1\\ < =>\sqrt{\left(\sqrt{x-1}-2\right)^2}+\sqrt{\left(\sqrt{x-1}-3\right)^2}=1\)ĐK: x>=1

\(< =>|\sqrt{x-1}-2|+|\sqrt{x-1}-3|=1\\ < =>\left(\left|\sqrt{x-1}-2\right|+\left|\sqrt{x-1}-3\right|\right)^2=1\\ < =>\sqrt{x-1}-2+2\left|\left(\sqrt{x-1}-2\right)\left(\sqrt{x-1}-3\right)\right|+\sqrt{x-1}-3=1\\ < =>2\sqrt{x-1}-5+2\left|x+5-5\sqrt{x-1}\right|=1\\ < =>2\left|x+5-5\sqrt{x-1}\right|=6-2\sqrt{x-1}\\ < =>\left|x+5-5\sqrt{x-1}\right|=3-\sqrt{x-1}\)

\(< =>\left[{}\begin{matrix}x+5-5\sqrt{x-1}=3-\sqrt{x-1}\left(1\right)\\x+5-5\sqrt{x-1}=\sqrt{x-1}-3\left(2\right)\end{matrix}\right.\)

Giải (1): \(x+5-5\sqrt{x-1}=3-\sqrt{x-1}\\ < =>x+2-4\sqrt{x-1}=0\\ < =>x-1-2\sqrt{x-1}.2+4=1\\ < =>\left(\sqrt{x-1}-2\right)^2=1\\ < =>\left[{}\begin{matrix}\sqrt{x-1}-2=1\\\sqrt{x-1}-2=-1\end{matrix}\right.< =>\left[{}\begin{matrix}x=8\\x=0\left(loại\right)\end{matrix}\right.\)

Giải (2) cũng ra x=8

ĐKXĐ: x>=1

\(\sqrt{x+2\sqrt{x-1}}+\sqrt{x-2\sqrt{x-1}}=\dfrac{1}{2}\left(x+3\right)\)

\(\Leftrightarrow\sqrt{x-1+2\sqrt{x-1}+1}+\sqrt{x-1-2\sqrt{x-1}+1}=\dfrac{1}{2}\left(x+3\right)\)

=>\(\sqrt{\left(\sqrt{x-1}+1\right)^2}+\sqrt{\left(\sqrt{x-1}-1\right)^2}=\dfrac{1}{2}\left(x+3\right)\)

=>\(\sqrt{x-1}+1+\left|\sqrt{x-1}-1\right|=\dfrac{1}{2}\left(x+3\right)\)

TH1: \(x>=2\)

PT sẽ tương đương với \(\sqrt{x-1}+1+\sqrt{x-1}-1=\dfrac{1}{2}\left(x+3\right)\)

=>\(2\sqrt{x-1}=\dfrac{1}{2}\left(x+3\right)\)

=>\(4\sqrt{x-1}=x+3\)

=>\(\sqrt{16x-16}=x+3\)

=>x>=-3 và (x+3)^2=16x-16

=>x>=-3 và x^2+6x+9-16x+16=0

=>x>=-3 và x^2-7x+25=0

=>Loại

TH2: 1<=x<2

PT sẽ là \(\sqrt{x-1}+1+1-\sqrt{x-1}=\dfrac{1}{2}\left(x+3\right)\)

=>1/2(x+3)=2

=>x+3=4

=>x=1(nhận)

16 tháng 12 2020

ĐKXĐ: \(x\ge1\)

Ta có:

\(\sqrt{x+2\sqrt{x-1}}+\sqrt{x-2\sqrt{x-1}}=\dfrac{x+3}{2}\\ \Leftrightarrow\sqrt{\left(\sqrt{x-1}+1\right)^2}+\sqrt{\left(\sqrt{x-1}-1\right)^2}=\dfrac{x+3}{2}\\ \Leftrightarrow\sqrt{x-1}+1+\left|\sqrt{x-1}-1\right|=\dfrac{x+3}{2}\\ \Leftrightarrow\sqrt{x-1}+\left|\sqrt{x-1}-1\right|=\dfrac{x+1}{2}\left(1\right)\)

Ta xét 2 trường hợp sau:

TH1: \(x\ge2\)

Khi đó:

\(\left(1\right)\Leftrightarrow2\sqrt{x-1}-1=\dfrac{x+1}{2}\\ \Leftrightarrow2\sqrt{x-1}=\dfrac{x+3}{2}\\ \Leftrightarrow16\left(x-1\right)=x^2+6x+9\\ \Leftrightarrow x^2-10x+25=0\\ \Leftrightarrow\left(x-5\right)^2=0\\ \Leftrightarrow x=5\left(TMĐK\right)\)

TH2: \(1\le x< 2\)

Khi đó:

\(\left(1\right)\Leftrightarrow1=\dfrac{x+1}{2}\Leftrightarrow x=1\left(TMĐK\right)\)

Vậy x=1 hoặc x=5

7 tháng 12 2021

\(\sqrt{x+2}+\sqrt{3-x}=x^3+x^2-4x-1\left(-2\le x\le3\right)\\ \Leftrightarrow\left(\sqrt{x+2}-1\right)+\left(\sqrt{3-x}-2\right)=x^3+x^2-4x-4\\ \Leftrightarrow\dfrac{x+1}{\sqrt{x+2}-1}-\dfrac{x+1}{\sqrt{3-x}+2}=\left(x+1\right)\left(x-2\right)\left(x+2\right)\\ \Leftrightarrow\left(x+1\right)\left(\dfrac{1}{\sqrt{x+2}-1}-\dfrac{1}{\sqrt{3-x}+2}\right)=\left(x+1\right)\left(x^2-4\right)\\ \Leftrightarrow\left[{}\begin{matrix}x=-1\left(tm\right)\\\dfrac{1}{\sqrt{x+2}-1}-\dfrac{1}{\sqrt{3-x}+2}=x^2-4\left(1\right)\end{matrix}\right.\)

\(\left(1\right)\Leftrightarrow\dfrac{1}{\sqrt{x+2}-1}-1-\left(\dfrac{1}{\sqrt{3-x}+2}-1\right)-x^2+4=0\\ \Leftrightarrow\dfrac{2-\sqrt{x+2}}{\sqrt{x+2}-1}+\dfrac{\sqrt{3-x}+1}{\sqrt{3-x}+2}-x^2+4=0\\ \Leftrightarrow\dfrac{2-x}{\left(\sqrt{x+2}-1\right)\left(2+\sqrt{x+2}\right)}+\dfrac{2-x}{\left(\sqrt{3-x}+2\right)\left(\sqrt{3-x}-1\right)}+\left(2-x\right)\left(x+2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}2-x=0\Rightarrow x=2\left(tm\right)\\\dfrac{1}{\left(\sqrt{x+2}-1\right)\left(2+\sqrt{x+2}\right)}+\dfrac{1}{\left(\sqrt{3-x}+2\right)\left(\sqrt{3-x}-1\right)}+x+2=0\left(1\right)\end{matrix}\right.\)

Với \(x\ge-2\Leftrightarrow\left(1\right)>0\left(\text{vô nghiệm}\right)\)

Vậy PT có nghiệm \(x\in\left\{2;-1\right\}\)

7 tháng 12 2021

e tưởng dòng 3 phải là\(\dfrac{x+1}{\sqrt{x+2}+1}-\dfrac{x+1}{\sqrt{3-x}+2}=\left(x+1\right)\left(x-2\right)\left(x+2\right)\)

chứ

Đk: `x>=3`.

`@ x+1=2 sqrt x + sqrt(x-3)`

`<=> x+1= (4x-x+3)/(2sqrtx-sqrt(x-3))`

`<=> x+1=(3x+3)/(2sqrtx-sqrt(x-3))`

`<=> (x+1).(1-3/(2sqrtx-sqrt(x-3)))=0`

`<=> x=-1 (ktm)` hoặc `2sqrtx-sqrt(x-3)=3 (1)`

`(1) <=> 2 sqrt x = 3+sqrt(x-3)`

`<=> 4x=9+6sqrt(x-3)+x-3`

`<=> x-2=2sqrt(x-3)`

`<=> x-2sqrt(x-3)-2=0`

`<=>x-3-2sqrt(x-3)+1=0`

`<=> (sqrt(x-3)-1)^2=0`

`<=> sqrt(x-3)=1`

`<=> x=4`

Vậy `x=4`.