Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
đặt \(\sqrt{2x^2+21x-11}=a\) và \(\sqrt{2x^2-9x+4}=b\)
==> \(a^2-b^2=30x-15\)
<=> \(\frac{a^2-b^2}{15}=2x-1\)
do đó pt đầu tên trở thành
\(b+3\sqrt{\frac{a^2-b^2}{15}}=a\)
<=> \(\sqrt{\frac{a^2-b^2}{15}}=\frac{a-b}{3}\)
<=> \(\frac{a^2-b^2}{15}=\frac{a^2-2ab+b^2}{9}\)
<-=> \(9a^2-9b^2=15a^2-30ab+15b^2\)
<=> \(6a^2-30ab+24b^2=0\)
<=> \(a^2-5ab+4b^2=0\)
<=> \(\left(a-b\right)\left(a-4b\right)=0\)
<=> \(\orbr{\begin{cases}a=b\\a=4b\end{cases}}\)
đến đây bạn tự thay a;b vào rùi giải nốt nhé
đk tự xử nha bạn
Đặt \(\sqrt{2x^2-9x+4}=a\)
\(\sqrt{2x-1}=b\)
\(\Rightarrow\sqrt{2x^2+21x-11}=\sqrt{a^2+15b^2}\) (\(a,b\ge0\))
PT \(\Rightarrow a-3b=\sqrt{a^2+15b^2}\)
\(\Rightarrow a^2-6ab+9b^2=a^2+15b^2\)
\(\Leftrightarrow6b^2+6ab=0\)
\(\Leftrightarrow6b\left(a+b\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}b=0\\a+b=0\end{cases}}\) \(\Rightarrow\orbr{\begin{cases}\sqrt{2x-1}=0\\\sqrt{2x^2-9x+4}+\sqrt{2x-1}=0\end{cases}}\)
Bạn phải tìm đk của cả 2 pt mới trên nha!!!
PT 1 bạn tự tìm đk kết hợp với đk đầu bài rồi giải nha!
cái pt 2 nếu ko tìm được đk thích hợp thì ko cần giải nữa còn nếu tìm được thì bạn giải theo pp sau
Do \(\hept{\begin{cases}\sqrt{2x-1}\ge0\\\sqrt{2x^2-9x+4}\ge0\end{cases}}\)
\(\Rightarrow\sqrt{2x^2-9x+4}+\sqrt{2x-1}\ge0\)
Dấu = xảy ra khi \(\hept{\begin{cases}2x^2-9x+4=0\\2x-1=0\end{cases}\Rightarrow x=\frac{1}{2}}\)
Đây là mk giải tắt nha! bạn đối chiếu đk rồi loại nghiệm là ok rồi!
k mk nha!
\(DK:x\ge\frac{1}{2}\)
\(\Leftrightarrow\sqrt{\left(2x-1\right)\left(x-4\right)}-3\sqrt{2x-1}=\sqrt{\left(2x-1\right)\left(x+11\right)}\left(DK:x\ge4\right)\)
\(\Leftrightarrow\sqrt{2x-1}\left(\sqrt{x-4}-3-\sqrt{x+11}\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=\frac{1}{2}\left(1\right)\\\sqrt{x-4}-3-\sqrt{x+11}=0\left(2\right)\end{cases}}\)
PT(2)\(\Leftrightarrow\sqrt{x-4}=\sqrt{x+11}+3\)
\(\Leftrightarrow x-4=x+20+6\sqrt{x+11}\)
\(\Leftrightarrow-4=\sqrt{x+11}\) (Vo ly can cua mot bieu thuc khong the bang am)
Vay PT vo nghiem
a, ĐKXĐ : Tự tìm hộ hen :)
Ta có : \(\sqrt{2x^2-9x+4}+3\sqrt{2x-1}=\sqrt{2x^2+21x-11}\)
=> \(\sqrt{2x^2-9x+4}+3\sqrt{2x-1}-\sqrt{2x^2+21x-11}=0\)
=> \(\sqrt{\left(x-4\right)\left(2x-1\right)}+3\sqrt{2x-1}-\sqrt{\left(2x-1\right)\left(x+11\right)}=0\)
=> \(\sqrt{2x-1}\left(\sqrt{x-4}+3-\sqrt{x+11}\right)=0\)
=> \(\left[{}\begin{matrix}\sqrt{2x-1}=0\\\sqrt{x-4}+3=\sqrt{x+11}\end{matrix}\right.\)
=> \(\left[{}\begin{matrix}2x-1=0\\x-4+6\sqrt{x-4}+9=x+11\end{matrix}\right.\)
=> \(\left[{}\begin{matrix}2x-1=0\\6\sqrt{x-4}=6\end{matrix}\right.\)
=> \(\left[{}\begin{matrix}2x-1=0\\x-4=1\end{matrix}\right.\)
=> \(\left[{}\begin{matrix}x=\frac{1}{2}\\x=5\end{matrix}\right.\) ( TM )
Vậy ...
b, ĐKXĐ : Tiếp tục tìm hộ nha :)
Ta có : \(\sqrt{1-x}+\sqrt{x^2-3x+2}+\left(x-2\right)\sqrt{\frac{x-1}{x-2}}=3\)
=> \(\sqrt{1-x}+\sqrt{\left(x-1\right)\left(x-2\right)}+\left(x-2\right)\sqrt{\frac{x-1}{x-2}}=3\)
=> \(\sqrt{1-x}+\sqrt{\left(1-x\right)\left(2-x\right)}+\left(x-2\right)\sqrt{\frac{1-x}{2-x}}=3\)
=> \(\sqrt{1-x}\left(1+\sqrt{2-x}+\frac{x-2}{\sqrt{2-x}}\right)=3\)
=> \(\sqrt{1-x}\left(1+\sqrt{2-x}+\frac{-\left(2-x\right)}{\sqrt{2-x}}\right)=3\)
=> \(\sqrt{1-x}\left(1+\sqrt{2-x}-\sqrt{2-x}\right)=3\)
=> \(\sqrt{1-x}=3\)
=> \(1-x=9\)
=> \(x=-8\left(TM\right)\)
Vậy ...
2x2 - 9x + 4 = 2x2 - 8x - x + 4 = (2x -1).(x - 4)
2x2 + 21x - 11 = 2x2 + 22x - x - 11 = (2x -1).(x + 11)
Điều kiện: x \(\ge\) 4
PT <=> \(\sqrt{\left(2x-1\right)\left(x-4\right)}+3\sqrt{2x-1}=\sqrt{\left(2x-1\right)\left(x+11\right)}\)
<=> \(\sqrt{2x-1}\left(\sqrt{x-4}+3-\sqrt{x+11}\right)=0\)
<=> \(\sqrt{2x-1}=0\) (1) hoặc \(\sqrt{x-4}-\sqrt{x+11}+3=0\) (2)
Giải (1) <=> x = 1/2 (Loại)
Giải (2) <=> \(\left(\sqrt{x-4}+3\right)^2=\left(\sqrt{x+11}\right)^2\)
<=> \(x-4+3+6\sqrt{x-4}=x+11\)
<=> \(\sqrt{x-4}=2\) <=> x = 8 (Thỏa mãn)
vậy x = 8
\(\Leftrightarrow\sqrt{\left(2x-1\right)\left(x-4\right)}+3\sqrt{2x-1}=\sqrt{\left(2x-1\right)\left(x+11\right)}\)
ĐK \(x\ge\dfrac{1}{2}\)
\(\Leftrightarrow\sqrt{\left(2x-1\right)\left(x-4\right)}+3\sqrt{2x-1}-\sqrt{\left(2x-1\right)\left(x+11\right)}=0\)
\(\Leftrightarrow\sqrt{2x-1}\left(\sqrt{x-4}+3-\sqrt{x+11}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{2}\left(nh\right)\\\sqrt{x-4}+3=\sqrt{x+11}\end{matrix}\right.\)
\(\Leftrightarrow\left(\sqrt{x-4}+3\right)^2=x+11\)
\(\Leftrightarrow x+5+6\sqrt{x-4}=x+11\)
\(\Leftrightarrow x+5+6\sqrt{x-4}=x+11\)
\(\Leftrightarrow\sqrt{x-4}=1\)
\(\Leftrightarrow x=5\left(nh\right)\)
vậy \(S=\left\{\dfrac{1}{2};5\right\}\)
1/
a/ ĐKXĐ: ...
\(A=\frac{\left(\sqrt{x}+1\right)\left(2\sqrt{x}-1\right)}{\left(1-\sqrt{x}\right)\left(1+\sqrt{x}\right)}+\frac{\sqrt{x}\left(\sqrt{x}+1\right)\left(2\sqrt{x}-1\right)}{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}\)
\(=\left(2\sqrt{x}-1\right)\left(\frac{x-\sqrt{x}+1+\sqrt{x}\left(1-\sqrt{x}\right)}{\left(1-\sqrt{x}\right)\left(x-\sqrt{x}+1\right)}\right)\)
\(=\frac{2\sqrt{x}-1}{\left(1-\sqrt{x}\right)\left(x-\sqrt{x}+1\right)}\)
Câu b không rút gọn được, lập phương lên thì biểu thức là nghiệm của pt \(x^3+6x-6=0\) ko có nghiệm đẹp
Bài 2:
a/ ĐKXĐ: \(x\ge2\)
\(\Leftrightarrow\sqrt{\left(x-1\right)\left(x-2\right)}-\sqrt{x-2}-\sqrt{\left(x-1\right)\left(x+3\right)}+\sqrt{x+3}=0\)
\(\Leftrightarrow\sqrt{x-2}\left(\sqrt{x-1}-1\right)-\sqrt{x+3}\left(\sqrt{x-1}-1\right)=0\)
\(\Leftrightarrow\left(\sqrt{x-2}-\sqrt{x+3}\right)\left(\sqrt{x-1}-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x-1}=1\\\sqrt{x-2}=\sqrt{x+3}\left(vn\right)\end{matrix}\right.\) \(\Rightarrow x=2\)
2/
b/
\(\Leftrightarrow\sqrt{\left(x-4\right)\left(2x-1\right)}+3\sqrt{2x-1}=\sqrt{\left(x+11\right)\left(2x-1\right)}\)
Để phương trình đã cho xác định thì:
\(\left\{{}\begin{matrix}\left(x-4\right)\left(2x-1\right)\ge0\\2x-1\ge0\\\left(x+11\right)\left(2x-1\right)\ge0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x\ge4\\x\le\frac{1}{2}\left(1\right)\end{matrix}\right.\\x\ge\frac{1}{2}\left(2\right)\end{matrix}\right.\)
Từ (1) và (2) \(\Rightarrow x=\frac{1}{2}\) thay vào pt thấy thỏa mãn
Vậy \(x=\frac{1}{2}\) là nghiệm duy nhất
c/ ĐKXĐ: ...
\(\Leftrightarrow x^2-2x+1+2017x-2016-2\sqrt{2017x-2016}+1=0\)
\(\Leftrightarrow\left(x-1\right)^2+\left(\sqrt{2017x-2016}-1\right)^2=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-1=0\\\sqrt{2017x-2016}-1=0\end{matrix}\right.\) \(\Rightarrow x=1\)
d/ \(\Leftrightarrow\sqrt{\left(1+x^2\right)^3}-1+3x^4-4x^3=0\)
\(\Leftrightarrow\frac{\left(1+x^2\right)^3-1}{\left(1+x^2\right)^3+1}+x^2\left(3x^2-4x\right)=0\)
\(\Leftrightarrow\frac{x^6+3x^4+3x^2}{\left(1+x^2\right)^2+1}+x^2\left(3x^2-4x\right)=0\)
\(\Leftrightarrow x^2\left(\frac{x^4+3x^3+3}{x^4+2x^2+2}+3x^2-4x\right)=0\)
\(\Rightarrow x=0\)