K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 10 2020

a) \(\frac{3}{4}\sqrt{x}-\sqrt{9x}+5=\frac{1}{4}\sqrt{9x}\)

ĐK : x ≥ 0

⇔ \(\frac{3}{4}\sqrt{x}-\sqrt{3^2x}-\frac{1}{4}\sqrt{3^2x}=-5\)

⇔ \(\frac{3}{4}\sqrt{x}-3\sqrt{x}-\frac{1}{4}\cdot3\sqrt{x}=-5\)

⇔ \(-\frac{9}{4}\sqrt{x}-\frac{3}{4}\sqrt{x}=-5\)

⇔ \(-3\sqrt{x}=-5\)

⇔ \(\sqrt{x}=15\)

⇔ \(x=225\)( tm )

b) \(\sqrt{3-x}-\sqrt{27-9x}+1,25\sqrt{48-16x}=6\)

ĐK : x ≤ 3

⇔ \(\sqrt{3-x}-\sqrt{3^2\left(3-x\right)}+\frac{5}{4}\sqrt{4^2\left(3-x\right)}=6\)

⇔ \(\sqrt{3-x}-3\sqrt{3-x}+\frac{5}{4}\cdot4\sqrt{3-x}=6\)

⇔ \(-2\sqrt{3-x}+5\sqrt{3-x}=6\)

⇔ \(3\sqrt{3-x}=6\)

⇔ \(\sqrt{3-x}=2\)

⇔ \(3-x=4\)

⇔ \(x=-1\)( tm )

c) \(\sqrt{9x^2+12x+4}=4\)

⇔ \(\sqrt{\left(3x+2\right)^2}=4\)

⇔ \(\left|3x+2\right|=4\)

⇔ \(\orbr{\begin{cases}3x+2=4\\3x+2=-4\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{2}{3}\\x=-2\end{cases}}\)

d) \(\frac{1}{3}\sqrt{x-1}+2\sqrt{4x-4}-12\sqrt{\frac{x-1}{25}}=\frac{29}{15}\)

ĐK : x ≥ 1

⇔  \(\frac{1}{3}\sqrt{x-1}+2\sqrt{2^2\left(x-1\right)}-12\sqrt{\left(\frac{1}{5}\right)^2\cdot\left(x-1\right)}=\frac{29}{15}\)

⇔  \(\frac{1}{3}\sqrt{x-1}+2\cdot2\sqrt{x-1}-12\cdot\frac{1}{5}\sqrt{x-1}=\frac{29}{15}\)

⇔  \(\frac{1}{3}\sqrt{x-1}+4\sqrt{x-1}-\frac{12}{5}\sqrt{x-1}=\frac{29}{15}\)

⇔ \(\frac{29}{15}\sqrt{x-1}=\frac{29}{15}\)

⇔ \(\sqrt{x-1}=1\)

⇔ \(x-1=1\)

⇔ \(x=2\)( tm )

17 tháng 9 2021

d. \(\sqrt{9x^2+12x+4}=4\)

<=> \(\sqrt{\left(3x+2\right)^2}=4\)

<=> \(|3x+2|=4\)

<=> \(\left[{}\begin{matrix}3x+2=4\\3x+2=-4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}3x=2\\3x=-6\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{2}{3}\\x=-2\end{matrix}\right.\)

c: Ta có: \(\dfrac{5\sqrt{x}-2}{8\sqrt{x}+2.5}=\dfrac{2}{7}\)

\(\Leftrightarrow35\sqrt{x}-14=16\sqrt{x}+5\)

\(\Leftrightarrow x=1\)

22 tháng 12 2016

dk:....

đặt \(\sqrt[5]{\frac{16x}{x-1}}=a\)

=> \(\sqrt[5]{\frac{x-1}{16x}}=\frac{1}{a}\)

ta duoc: a+1/a=5/2

tự giải tiếp nhé

28 tháng 11 2017

ĐK:\(x\ne-1;-3;-5;-7;-9\)

\(pt\Leftrightarrow\frac{2}{\left(x+1\right)\left(x+3\right)}+\frac{2}{\left(x+3\right)\left(x+5\right)}+\frac{2}{\left(x+5\right)\left(x+7\right)}+\frac{2}{\left(x+7\right)\left(x+9\right)}=\frac{2}{5}\)

\(\Leftrightarrow\frac{1}{x+1}-\frac{1}{x+3}+\frac{1}{x+3}-...-\frac{1}{x+9}=\frac{2}{5}\)

\(\Leftrightarrow\frac{1}{x+1}-\frac{1}{x+9}=\frac{2}{5}\)\(\Leftrightarrow\frac{8}{\left(x+1\right)\left(x+9\right)}=\frac{2}{5}\)

\(\Leftrightarrow2\left(x+1\right)\left(x+9\right)=40\)\(\Leftrightarrow x^2+10x-11=0\)

\(\Rightarrow\orbr{\begin{cases}x-1=0\\x+11=0\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}x=1\\x=-11\end{cases}}\) (thoả)

Vậy....

25 tháng 11 2023

2: ĐKXĐ: x>=0

\(\sqrt{3x}-2\sqrt{12x}+\dfrac{1}{3}\cdot\sqrt{27x}=-4\)

=>\(\sqrt{3x}-2\cdot2\sqrt{3x}+\dfrac{1}{3}\cdot3\sqrt{3x}=-4\)

=>\(\sqrt{3x}-4\sqrt{3x}+\sqrt{3x}=-4\)

=>\(-2\sqrt{3x}=-4\)

=>\(\sqrt{3x}=2\)

=>3x=4

=>\(x=\dfrac{4}{3}\left(nhận\right)\)

3: 

ĐKXĐ: x>=0

\(3\sqrt{2x}+5\sqrt{8x}-20-\sqrt{18}=0\)

=>\(3\sqrt{2x}+5\cdot2\sqrt{2x}-20-3\sqrt{2}=0\)

=>\(13\sqrt{2x}=20+3\sqrt{2}\)

=>\(\sqrt{2x}=\dfrac{20+3\sqrt{2}}{13}\)

=>\(2x=\dfrac{418+120\sqrt{2}}{169}\)

=>\(x=\dfrac{209+60\sqrt{2}}{169}\left(nhận\right)\)

4: ĐKXĐ: x>=-1

\(\sqrt{16x+16}-\sqrt{9x+9}=1\)

=>\(4\sqrt{x+1}-3\sqrt{x+1}=1\)

=>\(\sqrt{x+1}=1\)

=>x+1=1

=>x=0(nhận)

5: ĐKXĐ: x<=1/3

\(\sqrt{4\left(1-3x\right)}+\sqrt{9\left(1-3x\right)}=10\)

=>\(2\sqrt{1-3x}+3\sqrt{1-3x}=10\)

=>\(5\sqrt{1-3x}=10\)

=>\(\sqrt{1-3x}=2\)

=>1-3x=4

=>3x=1-4=-3

=>x=-3/3=-1(nhận)

6: ĐKXĐ: x>=3

\(\dfrac{2}{3}\sqrt{x-3}+\dfrac{1}{6}\sqrt{x-3}-\sqrt{x-3}=-\dfrac{2}{3}\)

=>\(\sqrt{x-3}\cdot\left(\dfrac{2}{3}+\dfrac{1}{6}-1\right)=-\dfrac{2}{3}\)

=>\(\sqrt{x-3}\cdot\dfrac{-1}{6}=-\dfrac{2}{3}\)

=>\(\sqrt{x-3}=\dfrac{2}{3}:\dfrac{1}{6}=\dfrac{2}{3}\cdot6=\dfrac{12}{3}=4\)

=>x-3=16

=>x=19(nhận)

18 tháng 9 2015

a) Điều kiện xác định \(16x+8\ge0\Leftrightarrow x\ge-\frac{1}{2}.\)

Theo bất đẳng thức Cô-Si cho 4 số ta được 

\(4\sqrt[4]{16x+8}=4\sqrt[4]{2\cdot2\cdot2\cdot\left(2x+1\right)}\le2+2+2+2x+1=2x+7\)

Do vậy mà \(4x^3+4x^2-5x+9\le2x+7\Leftrightarrow\left(2x-1\right)^2\left(x+2\right)\le0\).

Vì \(x\ge-\frac{1}{2}\to x+2>0\to\left(2x-1\right)^2\le0\to x=\frac{1}{2}.\) 

b. Ta viết phương trình dưới dạng sau đây  \(9x^4-21x^3+27x^2+16x+16=0\Leftrightarrow3x^2\left(3x^2-7x+7\right)+4\left(x+2\right)^2=0\)

Vì \(3x^2-7x+7=\frac{36x^2-2\cdot6x\cdot7+49+35}{12}=\frac{\left(6x-7\right)^2+35}{12}>0\) nên vế trái dương, suy ra phương trinh vô nghiệm.

22 tháng 10 2019

Đặt \(\sqrt{x^2+1}=t-x\)

\(\Leftrightarrow x^2+1=t^2-2tx+x^2\)

\(\Leftrightarrow x=\frac{t^2-1}{2t}\)

\(\Rightarrow\left(2\left(\frac{t^2-1}{2t}\right)+1\right)t+\frac{16\left(\frac{t^2-1}{2t}\right)+153}{16\left(\frac{t^2-1}{2t}\right)-45}=0\)

\(\Leftrightarrow8t^4-37t^3-53t^2+190t=0\)

\(\Leftrightarrow t\left(t-2\right)\left(8t+19\right)\left(t-5\right)=0\)

Làm nốt

SORRY BÀI NÀY KO VIẾT ĐC RÕ THÔNG CẢM VÌ MÁY KO VIẾT ĐC

Việc nhận thấy  3/4 và 12/5 là nghiệm của phương trình sẽ giúp ta tìm ra nhân tử (4x−3)(5x−12)(4x−3)(5x−12). 

Phương trình được viết lại

(2x−1)(16x−45)+(16x+153)(√x2+1−x)=0.(2x−1)(16x−45)+(16x+153)(x2+1−x)=0.

Nhận xét:  ``Tuyến tính hóa'' √x2+1−xx2+1−x bằng hai điểm 3434 và 125125, ta thu được phương trình √x2+1−x=−2x+711x2+1−x=−2x+711 nhận 3434 và 125125 làm hai nghiệm. Từ các này, ta có phân tích sau:

Phương trình trên tương đương

[(2x−1)(16x−45)+(16x+153)(−2x+711)]+(16x+153)(√x2+1−x−−2x+711)=0.[(2x−1)(16x−45)+(16x+153)(−2x+711)]+(16x+153)(x2+1−x−−2x+711)=0.

⇔8(4x−3)(5x−12)11+(16x+153)((4x−3)(5x−12))11(11√x2+1+9x+7)=0.⇔8(4x−3)(5x−12)11+(16x+153)((4x−3)(5x−12))11(11x2+1+9x+7)=0.

⇔(4x−3)(5x−12)(8+16x+15311√x2+1+9x+7)=0.⇔(4x−3)(5x−12)(8+16x+15311x2+1+9x+7)=0.

Nhận xét: 

8+16x+15311√x2+1+9x+7=88√x2+1+88x+20911√x2+1+9x+7>0∀x∈R.8+16x+15311x2+1+9x+7=88x2+1+88x+20911x2+1+9x+7>0∀x∈R.

Do đó phương trình ban đầu chỉ có hai nghiệm là 3434 và 125125.