Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) 7x - 35 = 0
<=> 7x = 0 + 35
<=> 7x = 35
<=> x = 5
b) 4x - x - 18 = 0
<=> 3x - 18 = 0
<=> 3x = 0 + 18
<=> 3x = 18
<=> x = 5
c) x - 6 = 8 - x
<=> x - 6 + x = 8
<=> 2x - 6 = 8
<=> 2x = 8 + 6
<=> 2x = 14
<=> x = 7
d) 48 - 5x = 39 - 2x
<=> 48 - 5x + 2x = 39
<=> 48 - 3x = 39
<=> -3x = 39 - 48
<=> -3x = -9
<=> x = 3
Phân tích : x2-3x +2=(x-1)(x-2) , x2-4x +3 = (x-1 )(x-3) , điều kiện : x # 1, x # 2 ,x # 3
pt tương đương với : \(\frac{x+4}{\left(x-1\right)\left(x-2\right)}=\frac{2x+5+x+1}{\left(x-1\right)\left(x-3\right)}\)
<=> \(\frac{x+4}{\left(x-1\right)\left(x-2\right)}=\frac{3\left(x+2\right)}{\left(x-1\right)\left(x-3\right)}\)
<=> \(\frac{\left(x+4\right)\left(x-3\right)-3\left(x-2\right)\left(x+2\right)}{\left(x-1\right)\left(x-2\right)\left(x-3\right)}=0\)
<=> \(\frac{x\left(1-2x\right)}{\left(x-1\right)\left(x-2\right)\left(x-3\right)}=0\)
<=> x=0 hoặc x=1/2
Có phải đề bài là ......... + \(\frac{7}{x^2+5}\)ko bạn???
Ta có: ĐKXĐ : x thuộc R.
\(\frac{4x^2+16}{x^2+6}=\frac{3}{x^2+1}+\frac{5}{x^2+3}+\frac{7}{x^2+5}\)
<=> \(\frac{4x^2+16}{x^2+6}-3=\left(\frac{3}{x^2+1}-1\right)+\left(\frac{5}{x^2+3}-1\right)+\left(\frac{7}{x^2+5}-1\right)\)
<=> \(\frac{x^2-2}{x^2+6}=\frac{2-x^2}{x^2+1}+\frac{2-x^2}{x^2+3}+\frac{2-x^2}{x^2+5}\)
<=> \(\frac{x^2-2}{x^2+6}-\frac{2-x^2}{x^2+1}-\frac{2-x^2}{x^2+3}-\frac{2-x^2}{x^2+5}=0\)
<=> ( x2 - 2 ) \(\left(\frac{1}{x^2+6}+\frac{1}{x^2+1}+\frac{1}{x^2+3}+\frac{1}{x^2+5}\right)\)= 0 ( vì nhân tử chung là x2 - 2 nên 3 hạng tử sau đổi dấu )
<=> x2 - 2 = 0. ( vì biểu thức trong ngoặc > 0 với mọi x thuộc R )
<=> \(x=\sqrt{2}\)hoặc \(x=-\sqrt{2}\)
Vậy ..........
\(ĐKXĐ:x\ne-3;x\ne2;x\ne-1;x\ne\frac{1}{2}\)
Xét\(VT=\frac{5}{\left(x+3\right)\left(x-2\right)}-\frac{2}{\left(x+1\right)\left(x+3\right)}\)
\(=\frac{5\left(x+1\right)}{\left(x+3\right)\left(x-2\right)\left(x+1\right)}-\frac{2\left(x-2\right)}{\left(x+1\right)\left(x+3\right)\left(x-2\right)}\)
\(=\frac{5x+5-2x+4}{\left(x+3\right)\left(x-2\right)\left(x+1\right)}\)
\(=\frac{3x+9}{\left(x+3\right)\left(x-2\right)\left(x+1\right)}=\frac{3}{\left(x-2\right)\left(x+1\right)}\)
\(pt\Leftrightarrow\frac{3}{\left(x-2\right)\left(x+1\right)}=\frac{3}{4x-2}\)
\(\Leftrightarrow\left(x-2\right)\left(x+1\right)=4x-2\)
\(\Leftrightarrow x^2-x-2=4x-2\)
\(\Leftrightarrow x^2-5x=0\)
\(\Leftrightarrow x\left(x-5\right)=0\Leftrightarrow\orbr{\begin{cases}x=0\\x-5=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=5\end{cases}}\)(tm)
Vậy tập nghiệm của phương trình là {0;5}
ĐKXĐ: \(x\ne-3,2,-1\)
\(\frac{5}{x^2+x-6}-\frac{2}{x^2+4x+3}=\frac{3}{4x-2}\)
\(\Leftrightarrow\frac{5}{\left(x-2\right)\left(x+3\right)}-\frac{2}{\left(x+1\right)\left(x+3\right)}=\frac{3}{2\left(x-2\right)}\)
\(\Leftrightarrow10\left(x+1\right)\left(2x-1\right)-4\left(x-2\right)\left(2x-1\right)=3\left(x-2\right)\left(x+3\right)\left(x+1\right)\)
\(\Leftrightarrow12x^2+30x-18=3x^2+6x^2-15x-18\)
\(\Leftrightarrow12x^2+30x=3x^3+6x^2-15\)
\(\Leftrightarrow12x^2+30x-3x^3-6x^2+15x=0\)
\(\Leftrightarrow6x^2+45x-3x^2=0\)
\(\Leftrightarrow3x\left(2x+15-x^2\right)=0\)
\(\Leftrightarrow-x\left(x^2-2x-15\right)=0\)
\(\Leftrightarrow-x\left(x-5\right)\left(x+3\right)=0\)
\(\Leftrightarrow\hept{\begin{cases}-x=0\\x-5=0\\x+3=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=0\left(tm\right)\\x=5\left(tm\right)\\x=-3\left(ktm\right)\end{cases}}\)
Vậy: tập nghiệm của phương trình là: S = {0, 5}
\(a,ĐKXĐ:x\ne\pm\frac{1}{2}\)
Ta có: \(\frac{2}{2x+1}-\frac{3}{2x-1}=\frac{4}{4x^2-1}\)
\(\Leftrightarrow2\left(2x-1\right)-3\left(2x+1\right)=4\)
\(\Leftrightarrow4x-2-6x-3=4\)
\(\Leftrightarrow-2x=9\)
\(\Leftrightarrow x=-\frac{9}{2}\)(Tm ĐKXĐ)
Vậy pt có nghiệm duy nhất \(x=-\frac{9}{2}\)
\(b,ĐKXĐ:x\ne\pm1;-3\)
Ta có: \(\frac{2x}{x+1}+\frac{18}{x^2+2x-3}=\frac{2x-5}{x+3}\)
\(\Leftrightarrow\frac{2x}{x+1}+\frac{18}{\left(x-1\right)\left(x+3\right)}=\frac{2x-5}{x+3}\)
\(\Leftrightarrow2x\left(x-1\right)\left(x+3\right)+18\left(x+1\right)=\left(2x-5\right)\left(x-1\right)\left(x+1\right)\)
\(\Leftrightarrow2x\left(x^2+2x-3\right)+18x+18=\left(2x-5\right)\left(x^2-1\right)\)
\(\Leftrightarrow2x^3+4x^2-6x+18x+18=2x^3-2x-5x^2+5\)
\(\Leftrightarrow9x^2+14x+13=0\)
\(\Leftrightarrow\left(9x^2+14x+\frac{49}{9}\right)+\frac{68}{9}=0\)
\(\Leftrightarrow\left(3x+\frac{7}{3}\right)^2+\frac{68}{9}=0\)
Pt vô nghiệm
\(c,ĐKXĐ:x\ne1\)
Ta có: \(\frac{1}{x-1}+\frac{2x^2-5}{x^3-1}=\frac{4}{x^2+x+1}\)
\(\Leftrightarrow x^2+x+1+2x^2-5=x-1\)
\(\Leftrightarrow3x^2=3\)
\(\Leftrightarrow x^2=1\)
\(\Leftrightarrow x=\pm1\)
Kết hợp vs ĐKXĐ được x = -1
Vậy pt có nghiệm duy nhất x = -1
làm lần lượt nha(bài nào k bt bỏ qua)
\(a,\frac{2}{2x+1}-\frac{3}{2x-1}=\frac{4}{4x^2-1}\)
\(\Rightarrow\frac{2\left(2x-1\right)-3\left(2x+1\right)}{4x^2-1}=\frac{4}{4x^2-1}\)
\(\Rightarrow-2x-5=4\)
\(\Rightarrow-2x=9\)
\(\Rightarrow x=\frac{9}{-2}\)
2.
pt <=> (x/2000 - 1) + (x+1/2001 - 1) + (x+2/2002 - 1) + (x+3/2003 - 1) + (x+4/2004 - 1 ) = 0
<=> x-2000/2000 + x-2000/2001 + x-2000/2002 + x-2000/2003 + x-2000/2004 = 0
<=> (x-2000).(1/2000 + 1/2001 + 1/2002 + 1/2003 + 1/2004) = 0
<=> x-2000=0 ( vì 1/2000 + 1/2001 + 1/2002 + 1/2003 + 1/2004 > 0 )
<=> x=2000
Tk mk nha
1.
a, = (2x-1)^2-2.(2x-1)+1-4
= (2x-1-1)^2-4
= (2x-2)^2-4
= (2x-2-2).(2x-2+2)
= 2x.(2x-4)
b, = [x.(x+3)].[(x+1).(x+2)]
= (x^2+3x).(x^2+3x+1)-8
= (x^2+3x+1)^2-1-8
= (x^2+3x+1)^2-9
= (x^2+3x+1-3).(x^2+3x+1+3)
= (x^2+3x-2).(x^2+3x+4)
= ((x+1).(x+3).(x^2+3x-2)
Tk mk nha
Làm đc 2 bài đầu chưa, t làm câu cuối cho, hai câu đầu dễ í mà
xin lỗi nha, bài đó bằng có một cái 1/5 thôi, tại viết sai
ĐK : \(X\ne-1;-3;-7;-9\)
\(\frac{1}{x^2+4x+3}+\frac{1}{x^2+8x+15}+\frac{1}{x^2+12x+35}+\frac{1}{x^2+16x+63}=\frac{1}{5}\)
\(\frac{1}{\left(x+2\right)^2-1}+\frac{1}{\left(x+4\right)^2-1}+\frac{1}{\left(x+6\right)^2-1}+\frac{1}{\left(x-8\right)^2-1}=\frac{1}{5}\)
\(\frac{1}{\left(x+2-1\right)\left(x+2+1\right)}+\frac{1}{\left(x+4-1 \right)\left(x+4+1\right)}+\frac{1}{\left(x+6-1\right)\left(x+6+1\right)}+\frac{1}{\left(x+8-1\right)\left(x+8+1\right)}=\frac{1}{5}\)
\(\frac{1}{\left(x+1\right)\left(x+3\right)}+\frac{1}{\left(x+3\right)\left(x+5\right)}+\frac{1}{\left(x+5\right)\left(x+7\right)}+\frac{1}{\left(x+7\right)\left(x+9\right)}=\frac{1}{5}\)
\(\frac{1}{2}\cdot\left(\frac{1}{x+1}-\frac{1}{x+3}+\frac{1}{x+3}-\frac{1}{x+4}+....-\frac{1}{x+9}\right)=\frac{1}{5}\)
\(\frac{1}{2}\cdot\left(\frac{1}{x+1}-\frac{1}{x+9}\right)=\frac{1}{5}\)
\(\frac{1}{x+1}-\frac{1}{x+9}=\frac{1}{5}:\frac{1}{2}=\frac{2}{5}\)
\(\frac{8}{\left(x+1\right)\left(x+9\right)}=\frac{2}{5}\)
\(2\left(x+1\right)\left(x+9\right)=40\)
\(2x^2+20x+18=40\Leftrightarrow x^2+10x+9=20\)
\(\Leftrightarrow x^2+10x-11=0\Leftrightarrow x^2+10x-10-1=0\)
\(\Leftrightarrow\left(x^2-1\right)+\left(10x-10\right)=0\Leftrightarrow\left(x-1\right)\left(x+1\right)+10\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+11\right)=0\)
\(\orbr{\begin{cases}x-1=0\\x++11=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=1\\x=-11\end{cases}}}\)( Thõa mãn )
Vậy ...............
1) \(\frac{x-1}{x+3}-\frac{x}{x-3}=\frac{4x+15}{9-x^2}\)
ĐKXĐ : \(x\ne\pm3\)
\(\Leftrightarrow\frac{x-1}{x+3}-\frac{x}{x-3}=\frac{-4x-15}{x^2-9}\)
\(\Leftrightarrow\frac{\left(x-1\right)\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}-\frac{x\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}=\frac{-4x-15}{\left(x-3\right)\left(x+3\right)}\)
\(\Leftrightarrow\frac{x^2-4x+3}{\left(x-3\right)\left(x+3\right)}-\frac{x^2+3x}{\left(x-3\right)\left(x+3\right)}=\frac{-4x-15}{\left(x-3\right)\left(x+3\right)}\)
\(\Leftrightarrow\frac{x^2-4x+3-x^2-3x}{\left(x-3\right)\left(x+3\right)}=\frac{-4x-15}{\left(x-3\right)\left(x+3\right)}\)
\(\Leftrightarrow-7x+3=-4x-15\)
\(\Leftrightarrow-7x+4x=-15-3\)
\(\Leftrightarrow-3x=-18\)
\(\Leftrightarrow x=6\)( tmđk )
Vậy x = 6 là nghiệm của phương trình
2) 2x + 3 < 6 - ( 3 - 4x )
<=> 2x + 3 < 6 - 3 + 4x
<=> 2x - 4x < 6 - 3 - 3
<=> -2x < 0
<=> x > 0
Vậy nghiệm của bất phương trình là x > 0
10000
\(+-\sqrt{7}\)