Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{x^2-26}{10}+\dfrac{x^2-25}{11}\ge\dfrac{x^2-24}{12}+\dfrac{x^2-23}{13}\)
\(\Leftrightarrow\left(\dfrac{x^2-26}{10}-1\right)+\left(\dfrac{x^2-25}{11}-1\right)\ge\left(\dfrac{x^2-24}{12}-1\right)+\left(\dfrac{x^2-23}{13}-1\right)\)
\(\Leftrightarrow\dfrac{x^2-36}{10}+\dfrac{x^2-36}{11}\ge\dfrac{x^2-36}{12}+\dfrac{x^2-36}{13}\)
\(\Leftrightarrow\dfrac{x^2-36}{10}+\dfrac{x^2-36}{11}-\dfrac{x^2-36}{12}-\dfrac{x^2-36}{13}\ge0\)
\(\Leftrightarrow\left(x^2-36\right)\left(\dfrac{1}{10}+\dfrac{1}{11}-\dfrac{1}{12}-\dfrac{1}{13}\right)\ge0\)
Vì \(\dfrac{1}{10}+\dfrac{1}{11}-\dfrac{1}{12}-\dfrac{1}{13}>0\Rightarrow x^2-36\ge0\Leftrightarrow\left[{}\begin{matrix}x\le-6\\x\ge6\end{matrix}\right.\)
Bất phương trình đó tương đương với:
\(\left(\dfrac{x^2-26}{10}-1\right)+\left(\dfrac{x^2-25}{11}-1\right)\ge\left(\dfrac{x^2-24}{12}-1\right)+\left(\dfrac{x^2-23}{13}-1\right)\)
⇔ \(\dfrac{x^2-36}{10}+\dfrac{x^2-36}{11}\ge\dfrac{x^2-36}{12}+\dfrac{x^2-36}{13}\)
⇔ \(\dfrac{x^2-36}{10}+\dfrac{x^2-36}{11}-\dfrac{x^2-36}{12}-\dfrac{x^2-36}{13}\ge0\)
⇔ \(\left(x^2-36\right)\left(\dfrac{1}{10}+\dfrac{1}{11}-\dfrac{1}{12}-\dfrac{1}{13}\right)\ge0\)
+)Vì \(\dfrac{1}{10}>\dfrac{1}{11}>\dfrac{1}{12}>\dfrac{1}{13}\) nên \(\dfrac{1}{10}+\dfrac{1}{11}-\dfrac{1}{12}-\dfrac{1}{13}>0\)
⇔ \(x^2-36\ge0\)
⇔ \(x^2\ge36\)
⇔ \(\sqrt{x^2}\ge6\)
⇔ \(\left|x\right|\ge6\)
⇔ \(\left[{}\begin{matrix}x\ge6\\x\le-6\end{matrix}\right.\)
➤ Vậy \(\left[{}\begin{matrix}x\ge6\\x\le-6\end{matrix}\right.\)
\(\sqrt{x+11}-\sqrt{10-3x}=\sqrt{1-x}\left(1\ge x\ge-11\right)\)
\(\Leftrightarrow\left(x+11\right)+\left(10-3x\right)-2\sqrt{\left(x+11\right)\left(10-3x\right)}=1-x\\ \Leftrightarrow-2x+21-2\sqrt{-3x^2-23x+110}=1-x\\ \Leftrightarrow-2\sqrt{-3x^2-23x+110}=x-20\\ \Leftrightarrow4\left(-3x^2-23x+110\right)=x^2-40x+400\\ \Leftrightarrow-12x^2-92x+440=x^2-40x+400\\ \Leftrightarrow13x^2+52x-40=0\)
\(\Delta=52^2-4\cdot\left(-40\right)\cdot13=4784>0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-4\sqrt{299}-52}{26}\\x=\dfrac{4\sqrt{299}-52}{26}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-2\sqrt{299}-26}{13}\\x=\dfrac{2\sqrt{299}-26}{13}\end{matrix}\right.\)
Tick nha
(x+9)(x+10)(x+11) -8x =0
<=>(x2+19x+90)(x+1)-8x=0
<=>x3+30x2+299x+990-8x=0
<=>(x+15)(x2+15x+66)=0
<=>x+15=0 hoặc x2+15x+66=0 (1)
<=>x=-15. Denta(1)=152-4(1.66)=-39<0
=>(1) vô nghiệm
Vậy nghiệm duy nhất thỏa mãn là x=-15
ĐKXĐ: \(x\notin\left\{10;-10\right\}\)
Ta có: \(\dfrac{720}{x+10}+4=\dfrac{720}{x-10}\)
\(\Leftrightarrow\dfrac{720\left(x-10\right)}{\left(x+10\right)\left(x-10\right)}+\dfrac{4\left(x^2-100\right)}{\left(x+10\right)\left(x-10\right)}=\dfrac{720\left(x+10\right)}{\left(x+10\right)\left(x-10\right)}\)
Suy ra: \(720x-7200+4x^2-400-720x-7200=0\)
\(\Leftrightarrow4x^2=14800\)
\(\Leftrightarrow x^2=3700\)
hay \(x\in\left\{10\sqrt{37};-10\sqrt{37}\right\}\)
ĐKXĐ: \(x\ne\pm10\)
\(\Leftrightarrow\dfrac{180}{x-10}-\dfrac{180}{x+10}=1\)
\(\Leftrightarrow\dfrac{180\left(x+10-x+10\right)}{\left(x-10\right)\left(x+10\right)}=1\)
\(\Leftrightarrow\dfrac{3600}{x^2-100}=1\)
\(\Rightarrow x^2-100=3600\)
\(\Leftrightarrow x^2=3700\)
\(\Leftrightarrow x=\pm10\sqrt{37}\) (thỏa mãn)