K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 8 2021

\(\sqrt{x+11}-\sqrt{10-3x}=\sqrt{1-x}\left(1\ge x\ge-11\right)\)

\(\Leftrightarrow\left(x+11\right)+\left(10-3x\right)-2\sqrt{\left(x+11\right)\left(10-3x\right)}=1-x\\ \Leftrightarrow-2x+21-2\sqrt{-3x^2-23x+110}=1-x\\ \Leftrightarrow-2\sqrt{-3x^2-23x+110}=x-20\\ \Leftrightarrow4\left(-3x^2-23x+110\right)=x^2-40x+400\\ \Leftrightarrow-12x^2-92x+440=x^2-40x+400\\ \Leftrightarrow13x^2+52x-40=0\)

\(\Delta=52^2-4\cdot\left(-40\right)\cdot13=4784>0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-4\sqrt{299}-52}{26}\\x=\dfrac{4\sqrt{299}-52}{26}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-2\sqrt{299}-26}{13}\\x=\dfrac{2\sqrt{299}-26}{13}\end{matrix}\right.\)

Tick nha

16 tháng 9 2021

a) \(3x-2\sqrt{x-1}=4\) (ĐK: x ≥ 1)

\(\Rightarrow3x-2\sqrt{x-1}-4=0\)

\(\Rightarrow3x-6-2\sqrt{x-1}+2=0\)

\(\Rightarrow3\left(x-2\right)-2\left(\sqrt{x-1}-1\right)=0\)

\(\Rightarrow3\left(x-2\right)-2.\dfrac{x-2}{\sqrt{x-1}+1}=0\)

\(\Rightarrow\left(x-2\right)\left[3-\dfrac{2}{\sqrt{x-1}+1}\right]=0\)

*TH1: x = 2 (t/m)

*TH2: \(3-\dfrac{2}{\sqrt{x-1}+1}=0\)

\(\Rightarrow3=\dfrac{2}{\sqrt{x-1}+1}\)

\(\Rightarrow3\sqrt{x-1}+3=2\)

\(\Rightarrow3\sqrt{x-1}=-1\) (vô lí)

Vậy S = {2}

b) \(\sqrt{4x+1}-\sqrt{x+2}=\sqrt{3-x}\) (ĐK: \(-\dfrac{1}{4}\le x\le3\) )

\(\Rightarrow\sqrt{4x+1}-3-\sqrt{x+2}+2-\sqrt{3-x}+1=0\)

\(\Rightarrow\dfrac{4x-8}{\sqrt{4x+1}+3}-\dfrac{x-2}{\sqrt{x+2}+2}+\dfrac{x-2}{\sqrt{3-x}+1}=0\)

\(\Rightarrow\left(x-2\right)\left(\dfrac{4}{\sqrt{4x+1}+3}-\dfrac{1}{\sqrt{x+2}+2}+\dfrac{1}{\sqrt{3-x}+1}\right)=0\)

=> x = 2

 

 

 

16 tháng 9 2021

\(a,3x-2\sqrt{x-1}=4\left(x\ge1\right)\\ \Leftrightarrow-2\sqrt{x-1}=4-3x\\ \Leftrightarrow4\left(x-1\right)=16-24x+9x^2\\ \Leftrightarrow9x^2-28x+20=0\\ \Leftrightarrow\left(x-2\right)\left(9x-10\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=2\left(tm\right)\\x=\dfrac{10}{9}\left(tm\right)\end{matrix}\right.\)

\(b,\sqrt{4x+1}-\sqrt{x+2}=\sqrt{3-x}\left(-\dfrac{1}{4}\le x\le3\right)\\ \Leftrightarrow4x+1+x+2-2\sqrt{\left(4x+1\right)\left(x+2\right)}=3-x\\ \Leftrightarrow-2\sqrt{\left(4x+1\right)\left(x+2\right)}=2-6x\\ \Leftrightarrow\sqrt{4x^2+9x+2}=3x-1\\ \Leftrightarrow4x^2+9x+2=9x^2-6x+1\\ \Leftrightarrow5x^2-15x-1=0\\ \Leftrightarrow\Delta=225+20=245\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{15-\sqrt{245}}{10}=\dfrac{15-7\sqrt{5}}{10}\left(ktm\right)\\x=\dfrac{15+\sqrt{245}}{10}=\dfrac{15+7\sqrt{5}}{10}\left(tm\right)\end{matrix}\right.\Leftrightarrow x=\dfrac{15+7\sqrt{5}}{10}\)

\(ĐKXĐ:\dfrac{74}{27}\le x\le\dfrac{10}{3}\)

PT đã cho tương đương với:

\(4-3\sqrt{10-3x}=x^2-4x+4\)

\(\Leftrightarrow x^2-4x+3+3\sqrt{10-3x}-3=0\)

\(\Leftrightarrow\left(x-1\right)\left(x-3\right)-3\left(1-\sqrt{10-3x}\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x-3\right)-3.\dfrac{3\left(x-3\right)}{1+\sqrt{10-3x}}=0\)

\(\Leftrightarrow\left(x-3\right)\left(x-1-\dfrac{9}{1+\sqrt{10-3x}}\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\left(1\right)\\\left(x-1\right)\left(1+\sqrt{10-3x}\right)=9\left(2\right)\end{matrix}\right.\)

Ta có:

\(pt\left(1\right)\Leftrightarrow x=3\left(tm\right)\)

\(pt\left(2\right):\left(x-1\right)\left(1+\sqrt{10-3x}\right)=9\)

mà \(\left(x-1\right)\left(1+\sqrt{10-3x}\right)\le\dfrac{7}{3}.\dfrac{7}{3}\) nên \(pt\left(2\right)\) vô nghiệm

Vậy pt đã cho có tập nghiệm \(S=\left\{3\right\}\)

 

AH
Akai Haruma
Giáo viên
16 tháng 5 2021

Lời giải:
ĐKXĐ: $x\geq \frac{-1}{3}$

PT $\Leftrightarrow \frac{x}{\sqrt{x+2}}=\sqrt{3x+1}-\sqrt{x+1}$

$\Leftrightarrow \frac{x}{\sqrt{x+2}}=\frac{2x}{\sqrt{3x+1}+\sqrt{x+1}}$

$\Leftrightarrow x\left(\frac{1}{\sqrt{x+2}}-\frac{2}{\sqrt{3x+1}+\sqrt{x+1}}\right)=0$

Xét các TH:

TH1: $x=0$ (thỏa mãn)

TH2: $\frac{1}{\sqrt{x+2}}-\frac{2}{\sqrt{3x+1}+\sqrt{x+1}}$

$\Leftrightarrow \sqrt{3x+1}+\sqrt{x+1}=2\sqrt{x+2}$

$\Rightarrow 4x+2+2\sqrt{(3x+1)(x+1)}=4(x+2)$

$\Leftrightarrow \sqrt{(3x+1)(x+1)}=3$

$\Rightarrow (3x+1)(x+1)=9$

$\Leftrightarrow 3x^2+4x-8=0$

$\Rightarrow x=\frac{-2\pm 2\sqrt{7}}{3}$

Kết hợp với ĐKXĐ suy ra $x=\frac{-2+2\sqrt{7}}{3}$

Vậy............