K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

đặt x+4 = y => x+3 = y-1 ; x+5 = y+1

Khi đó (1) trở thành:

(y-1)^4 + (y+1)^4 = 16
<=> (y^4 - 4y^3 + 6y^2 - 4y + 1) + (y^4 + 4y^3 + 6y^2 + 4y + 1) =16
<=> 2y^4 + 12y^2 + 2 = 16
<=> y^4 + 6y^2 + 1 = 8
<=> y^4 + 6y^2 - 7 =0
<=> (y^2 - 1)(y^2 + 7) = 0
=> y^2 - 1 = 0 
<=> y = +-1 
<=> x+4 = +-1 
<=> x = -3 ; x= -5

Vậy phương trinh đã cho có nhiệm x = -3 ; x = -5

đặt x-4 = y => x-3 = y+1 ; x-5 = y-1

Khi đó (1) trở thành:

(y-1)^4 + (y-1)^4 = tự tính 
<=> (y^4 + 4y^3 - 6y^2 + 4y - 1) + (y^4 - 4y^3 - 6y^2 - 4y -1) = tự tính 
<=> 2y^4 - 12y^2 - 2 = tự tính 
<=> y^4 - 6y^2 - 1 =  tự tính 
<=> y^4 - 6y^2 + 7 = tự tính 
<=> (y^2 - 1)(y^2 - 7) = tự tính 
=> y^2 +1 = tự tính 
<=> y = tự tính 
<=> x-4 = +-1 
<=>x=............;x=...........
Vậy phương trinh đã cho có nhiệm x=...........;x=.......

15 tháng 3 2023

15 tháng 3 2023

em cảm ơn ạ

12 tháng 4 2022

\(a,\dfrac{x-3}{x}=\dfrac{x-3}{x+3}\)\(\left(đk:x\ne0,-3\right)\)

\(\Leftrightarrow\dfrac{x-3}{x}-\dfrac{x-3}{x+3}=0\)

\(\Leftrightarrow\dfrac{\left(x-3\right)\left(x+3\right)-x\left(x-3\right)}{x\left(x+3\right)}=0\)

\(\Leftrightarrow x^2-9-x^2+3x=0\)

\(\Leftrightarrow3x-9=0\)

\(\Leftrightarrow3x=9\)

\(\Leftrightarrow x=3\left(n\right)\)

Vậy \(S=\left\{3\right\}\)

12 tháng 4 2022

\(b,\dfrac{4x-3}{4}>\dfrac{3x-5}{3}-\dfrac{2x-7}{12}\)

\(\Leftrightarrow\dfrac{4x-3}{4}-\dfrac{3x-5}{3}+\dfrac{2x-7}{12}>0\)

\(\Leftrightarrow\dfrac{3\left(4x-3\right)-4\left(3x-5\right)+2x-7}{12}>0\)

\(\Leftrightarrow12x-9-12x+20+2x-7>0\)

\(\Leftrightarrow2x+4>0\)

\(\Leftrightarrow2x>-4\)

\(\Leftrightarrow x>-2\)

19 tháng 5 2021

a) 16 - 3x = 4

<=> 3x = 12

<=> x = 4

Vậy x = 4 là nghiệm phương trình 

b) (x2 - 4x + 5)2 - (x - 1)(x - 3) = 4

<=> (x2 - 4x + 5)2 - 4 - (x - 1)(x - 3) = 0

<=> (x2 - 4x + 5 - 2)(x2 - 4x + 5 + 2) - (x - 1)(x - 3) = 0

<=> (x2 - 4x + 3)(x2 - 4x + 7) - (x - 1)(x - 3) = 0

<=> (x - 1)(x - 3)(x2 - 4x + 7) - (x - 1)(x - 3) = 0

<=> (x - 1)(x - 3)(x2 - 4x + 6) = 0

<=> (x  - 1)(x - 3) = 0 (Vì x2 - 4x + 6 > 0 \(\forall x\))

<=> \(\orbr{\begin{cases}x-1=0\\x-3=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=1\\x=3\end{cases}}\)

Vậy x \(\in\left\{1;3\right\}\)là nghiệm phương trình 

a)16-3x=4

3x=16-4

3x=12

x=4

Vậy x=4

b)(x2-4x+5)2-(x-1).(x-3)=4

[(x-2)2+1]2-[(x-2)+1].[(x-2)-1]=4

=>(x-2)2+2.(x-2).1+1-(x-2)2-12=4

2(x-2)=4

=>x-2=2

=>x=4

Vậy ....................

Chú bn học tốt

13 tháng 7 2017

1. Ta có \(\left(x+2\right)\left(x+4\right)\left(x+6\right)\left(x+8\right)+16=0\)

\(\Rightarrow\)\(\left[\left(x+2\right)\left(x+8\right)\right].\left[\left(x+4\right)\left(x+6\right)\right]+16=0\)

\(\Rightarrow\left(x^2+10x+16\right)\left(x^2+10x+24\right)+16=0\)

Đặt \(x^2+10x=t\)

Pt \(\Leftrightarrow\left(t+16\right)\left(t+24\right)+16=0\Leftrightarrow t^2+40t+400=0\Leftrightarrow t=-20\)

\(\Rightarrow x^2+10x+20=0\Rightarrow\orbr{\begin{cases}x=-5+\sqrt{5}\\x=-5-\sqrt{5}\end{cases}}\)

2. Ta có \(\left(x+2\right)\left(x+3\right)\left(x+4\right)\left(x+5\right)-24=0\)

\(\Rightarrow\left[\left(x+2\right)\left(x+5\right)\right].\left[\left(x+3\right)\left(x+4\right)\right]-24=0\)\(\Rightarrow\left(x^2+7x+10\right)\left(x^2+7x+12\right)-24=0\)

Đặt \(x^2+7x=t\Rightarrow\left(t+10\right)\left(t+12\right)-24=0\Rightarrow t^2+22t+96=0\)\(\Rightarrow\orbr{\begin{cases}t=-6\\t=-16\end{cases}}\)

Với \(t=-6\Rightarrow x^2+7x+6=0\Rightarrow\orbr{\begin{cases}x=-6\\x=-1\end{cases}}\)

Với \(t=-16\Rightarrow x^2+7x+16=0\left(l\right)\)

Vậy pt có 2 nghiệm là \(\orbr{\begin{cases}x=-6\\x=-1\end{cases}}\)

18 tháng 7 2017

Quản lí Hoàng Thị Lan Hương giúp em giải bài toán vừa đăng lên đc ko ạ.??? ^^

24 tháng 4 2020

khó quá

24 tháng 4 2020

khó gì fan gao bạc

1 tháng 2 2018

Đặt : x+3 = a

=> x+5 = a+2

pt <=> a^4+(a+2)^4 = 16

<=> a^4+a^4+8a^3+24a^2+32a+16 = 16

<=> 2a^4+8a^3+24a^2+32a = 0

<=> a^4+4a^3+12a^2+16a = 0

<=> a.(a^3+4a^2+12a+16) = 0

<=> a.[(a^3+2a^2)+(2a^4+4a)+(8a+16)] = 0

<=> a.(a+2).(a^2+2a+8) = 0

<=> a.(a+2) = 0 ( vì a^2+2a+8 > 0 )

<=> a=0 hoặc a+2=0 

<=> a=0 hoặc a=-2

<=> x+3=0 hoặc x+3=-2

<=> x=-3 hoặc x=-5

Vậy ..............

Tk mk nha

1 tháng 2 2018

Ta có: \(\left(x+3\right)^4+\left(x+5\right)^4=16\left(1\right)\)

Đặt x + 4 = y thì phương trình (1) trở thành:

   \(\left(y-1\right)^4+\left(y+1\right)^4=16\)

\(\Leftrightarrow y^4-4y^3+6y^2-4y+1+y^4+4y^3+6y^2+4y+1=16\)

\(\Leftrightarrow2y^4+12y^2+2=16\)

\(\Leftrightarrow2\left(y^4+6y^2+1\right)=16\)

\(\Leftrightarrow y^4+6y^2+1=8\)

\(\Leftrightarrow y^4+6y^2+1-8=0\)

\(\Leftrightarrow y^4+7y^2-y^2-7=0\)

\(\Leftrightarrow y^2\left(y^2-1\right)-7\left(y^2-1\right)=0\)

\(\Leftrightarrow\left(y^2-7\right)\left(y^2-1\right)=0\)

Vì \(y^2-7\ne0\)

\(\Rightarrow y^2-1=0\Rightarrow y^2=1\Rightarrow y=\pm1\)

Với y = 1 => x + 4 = y => x + 4 = 1 => x = -3

Với y = -1 => x + 4 = y => x + 4 = -1 => x = -5

Vậy x = {-3;-5}

12 tháng 2 2016

a/ (x + 3)4 + (x + 5)4 = 16

=> (x2 + 6x + 9)2 + (x2 + 10x + 25)2 = 16

=> x4 + 36x2 + 81 + 12x3 + 108x + 18x2 + x4 + 100x2 + 625 + 20x3 + 500x + 50x2 = 16

=> 2x4 + 32x3 + 204x2 + 608x + 690 = 0

=> 2(x + 3)(x + 5)(x2 + 8x + 23) = 0

=> (x + 3)(x + 5)(x2 + 8x + 23) = 0

=> x = -3

hoặc x = -5

hoặc x2 + 8x + 23 = 0 , mà x2 + 8x + 23 > 0 => pt vô nghiệm

Vậy x = -3 , x = -5

12 tháng 2 2016

b/ tương tự như câu a ^^

1: Ta có: \(\dfrac{5x^2-12}{x^2-1}+\dfrac{3}{x-1}=\dfrac{5x}{x+1}\)

\(\Leftrightarrow\dfrac{5x^2-12}{\left(x-1\right)\left(x+1\right)}+\dfrac{3x+3}{\left(x-1\right)\left(x+1\right)}=\dfrac{5x^2-5x}{\left(x+1\right)\left(x-1\right)}\)

Suy ra: \(5x^2+3x-9=5x^2-5x\)

\(\Leftrightarrow8x=9\)

hay \(x=\dfrac{9}{8}\left(tm\right)\)

2: Ta có: \(\dfrac{3}{x-5}-\dfrac{15-3x}{x^2-25}=\dfrac{3}{x+5}\)

\(\Leftrightarrow\dfrac{3x+15}{\left(x-5\right)\left(x+5\right)}+\dfrac{3x-15}{\left(x-5\right)\left(x+5\right)}=\dfrac{3x-15}{\left(x+5\right)\left(x-5\right)}\)

Suy ra: \(6x=3x-15\)

\(\Leftrightarrow3x=-15\)

hay \(x=-5\left(loại\right)\)

 

AH
Akai Haruma
Giáo viên
19 tháng 8 2021

2. ĐKXĐ: $x\neq \pm 5$
PT \(\Leftrightarrow \frac{3}{x-5}+\frac{3x-15}{x^2-25}=\frac{3}{x+5}\)

\(\Leftrightarrow \frac{3}{x-5}+\frac{3(x-5)}{(x-5)(x+5)}=\frac{3}{x+5}\)

\(\Leftrightarrow \frac{3}{x-5}+\frac{3}{x+5}=\frac{3}{x+5}\Leftrightarrow \frac{3}{x-5}=0\) (vô lý)

Vậy pt vô nghiệm.