K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
18 tháng 4 2021

TH1: \(x\ge2\)

\(\left(x-1\right)\left(x+1\right)\left(x-2\right)\left(x+2\right)=4\)

\(\Leftrightarrow\left(x^2-1\right)\left(x^2-4\right)=4\)

\(\Leftrightarrow x^4-5x^2=0\Rightarrow\left[{}\begin{matrix}x=0\left(loại\right)\\x=-\sqrt{5}\left(loại\right)\\x=\sqrt{5}\end{matrix}\right.\)

TH2: \(x< 2\)

\(-\left(x-2\right)\left(x+2\right)\left(x-1\right)\left(x+1\right)=4\)

\(\Leftrightarrow\left(x^2-1\right)\left(x^2-4\right)=-4\)

\(\Leftrightarrow x^4-5x^2+8=0\)

\(\Leftrightarrow\left(x^2-\dfrac{5}{2}\right)^2+\dfrac{7}{4}=0\) (vô nghiệm)

Vậy \(x=\sqrt{5}\)

13 tháng 1 2017

với x=1 không phải nghiêm

(x-1) khác 0

nhân hai vế với (x-1)

x^16-1=x-1

=> x^16=x=> x=0

14 tháng 1 2017

Làm gọn thế :)

Ta dễ thấy x = 1 không phải là nghiệm của pt nên ta nhân 2 vế cho (x - 1)

\(\left(x-1\right)\left(x+1\right)\left(x^2+1\right)\left(x^4+1\right)\left(x^8+1\right)=x-1\)

\(\Leftrightarrow\left(x^2-1\right)\left(x^2+1\right)\left(x^4+1\right)\left(x^8+1\right)=x-1\)

\(\Leftrightarrow\left(x^4-1\right)\left(x^4+1\right)\left(x^8+1\right)=x-1\)

\(\Leftrightarrow\left(x^8-1\right)\left(x^8+1\right)=x-1\)

\(\Leftrightarrow\left(x^{16}-1\right)=x-1\)

\(\Leftrightarrow x^{16}-x=0\)

\(\Leftrightarrow\left(x-1\right)x\left(x^2+x+1\right)\left(x^4+x^3+x^2+x+1\right)\left(x^8-x^7+x^5-x^4+x^3-x+1\right)=0\)

\(\Leftrightarrow x=0\)(mấy cái còn lại đều khác 0 hết)

Ta có : \(x\left(x+1\right)\left(x-1\right)\left(x+2\right)=24\)

\(\Leftrightarrow\left(x^2+x\right)\left(x^2-x+2x-2\right)=24\)

\(\Leftrightarrow\left(x^2+x\right)\left(x^2+x-2\right)=24\)

\(\Leftrightarrow\left(x^2+x-1+1\right)\left(x^2+x-1-1\right)=24\)

\(\Leftrightarrow\left(x^2+x-1\right)^2-1=24\)

\(\Leftrightarrow\left(x^2+x-1\right)^2=25\)

<=> 2 trường hợp sảy ra là bằng 5 hoặc -5 nhé 

1 tháng 7 2018

bạn lam được cả câu a thì mk k

23 tháng 3 2020

AYUASGSHXHFSGDB HAGGAHAJF

20 tháng 8 2018

Nhị thức có nghiệm lần lượt là

-1 ; 1 ; 0 ; 2

\(x< -1\)

\(-1\le x< 0\)

\(0\le x< 1\)

\(1\le x< 2\)

\(x\ge2\)

Xét \(x< -1\) ta có 

\(\left|x+1\right|=-\left(x+1\right)\)

\(\left|x-1\right|=-\left(x-1\right)\)

\(\left|x\right|=-x\)

\(\left|x-2\right|=-\left(x-2\right)\)

Ta có pt

\(-\left(x+1\right)-3\left(x-1\right)=x+2-x-2\left(x-2\right)\)

\(\Leftrightarrow x=-2\)

Xét \(-1\le x< 0\)ta có pt

\(\left(x+1\right)-3\left(x-1\right)=x+2-x-2\left(x-2\right)\)

\(\Leftrightarrow0x=2\) ( pt vô nghiệm)

Xét \(0\le x< 1\)ta có pt

\(x+1-3\left(x-1\right)=x+2+x-2\left(x-2\right)\)

\(\Leftrightarrow x=-1\)(loại)

Xét \(1\le x< 2\) ta có pt

\(x+1+3\left(x+1\right)=x+2+x-2\left(x-2\right)\)

\(\Leftrightarrow x=2\) (loại)

Xét \(x\ge2\) ta có pt

\(x+1+3\left(x-1\right)=x+2+x+2\left(x-2\right)\)

\(\Leftrightarrow0x=0\) 

Vậy \(\orbr{\begin{cases}x=2\\x\ge2\end{cases}}\)....

5 tháng 2 2017

\(\Leftrightarrow\left(x-2\right)\left(x-1\right)\left(x+1\right)\left(x+2\right)=4\)

\(\Leftrightarrow\left(x^2-1\right)\left(x^2-4\right)=4\Leftrightarrow t\left(t-3\right)=4\Leftrightarrow\left(t-\frac{3}{2}\right)^2=4+\frac{9}{4}\)

\(\orbr{\begin{cases}t=\frac{3}{2}+\frac{5}{2}=4\Rightarrow x=+-\sqrt{5}\\t=\frac{3}{2}-\frac{5}{2}=-1\Rightarrow x=0\left(loai\right)\end{cases}}\) nghiệm x=-cawn loại  pt (t-3/2)^2=-4+25/4<0 => vo nghiệm

Kết luận nghiệm duy nhất x=căn(5)

13 tháng 2 2019

cách làm thì đùng nhưng cần xét 2 trường hợp là x>= 2 và x<2 và bài trên mới xét x>= 2

16 tháng 2 2020

=> x2+14x+49+x2-3x+2x-6=2(x2+4x-x-4)

=>x2+14x+49+x2-x-6-2x2-8x+8=0

=> (x2+x2-2x2) + ( 14x-x-8x ) + (49-6+8)=0

=>5x + 51 = 0

=>5x=-51

Vậy S={-51/5}

=>x=-51/5

\(\left(x-5\right)\left(x-1\right)=2x\left(x-1\right)\)

\(\Leftrightarrow\left(x-1\right)\left(x-5-2x\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x+5\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=1\\x=-5\end{cases}}\)

Vậy............

\(5\left(x+3\right)\left(x-2\right)-3\left(x+5\right)\left(x+2\right)=0\)

\(\Leftrightarrow5\left(x^2+x-6\right)-3\left(x^2+7x+10\right)=0\)

\(\Leftrightarrow2x^2-16x-60=0\)

\(\Leftrightarrow x^2-8x-30=0\)

làm tiếp nhé!!!!!

13 tháng 3 2019

\(\Leftrightarrow8\left(x+\frac{1}{x}\right)^2+4\left(x^2+\frac{1}{x^2}\right)\left[\left(x^2+\frac{1}{x^2}\right)-\left(x+\frac{1}{x}\right)^2\right]=\left(x+4\right)^2.ĐKXĐ:x\ne0\)

\(\Leftrightarrow8\left(x+\frac{1}{x}\right)^2+4\left(x^2+\frac{1}{x^2}\right)\left(x^2+\frac{1}{x^2}-x^2-2-\frac{1}{x^2}\right)=\left(x+4\right)^2\)

\(\Leftrightarrow8\left(x+\frac{1}{x}\right)^2-8\left(x^2+\frac{1}{x^2}\right)=\left(x+4\right)^2\)

\(\Leftrightarrow8\left[\left(x+\frac{1}{x}\right)^2-\left(x^2+\frac{1}{x^2}\right)\right]=\left(x+4\right)^2\)

\(\Leftrightarrow8\left(x^2+2+\frac{1}{x^2}-x^2+\frac{1}{x^2}\right)=\left(x+4\right)^2\)

\(\Leftrightarrow16=\left(x+4\right)^2\)

\(\Leftrightarrow x^2+8x+16=16\)

\(\Leftrightarrow x^2+8x=0\)

\(\Leftrightarrow x\left(x+8\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=0\left(l\right)\\x=-8\left(n\right)\end{cases}}\)

V...\(S=\left\{-8\right\}\)

^^

13 tháng 3 2019

bạn ghi sai đề ở chỗ \(\left(x+\frac{1}{x}\right)^2\)chứ ko phải \(\left(x+\frac{1}{x^2}\right)^2\)nhé