Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(x-5\right)\left(x-1\right)=2x\left(x-1\right)\)
\(\Leftrightarrow\left(x-1\right)\left(x-5-2x\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+5\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=1\\x=-5\end{cases}}\)
Vậy............
\(5\left(x+3\right)\left(x-2\right)-3\left(x+5\right)\left(x+2\right)=0\)
\(\Leftrightarrow5\left(x^2+x-6\right)-3\left(x^2+7x+10\right)=0\)
\(\Leftrightarrow2x^2-16x-60=0\)
\(\Leftrightarrow x^2-8x-30=0\)
làm tiếp nhé!!!!!
a) \(\left(3x+2\right)^2-\left(3x-2\right)^2=5x+8\)
\(\Rightarrow\left(3x+2+3x-2\right)\left(3x+2-3x+2\right)=5x+8\)
\(\Rightarrow4.6x=5x+8\Rightarrow24x=5x+8\)
\(\Rightarrow19x=8\Rightarrow x=\frac{8}{19}\)
b) \(3\left(x-2\right)^2+9\left(x-1\right)=3\left(x^2+x-3\right)\)
\(\Rightarrow3\left(x^2-4x+4\right)+9x-9=3x^2+3x-9\)
\(\Rightarrow3x^2-12x+12+9x-9=3x^2+3x-9\)
\(\Rightarrow-12x+12+9x-9=3x-9\)
\(\Rightarrow-3x+3=3x-9\)
\(\Rightarrow6x=12\Rightarrow x=2\)
Ta có : \(x\left(x+1\right)\left(x-1\right)\left(x+2\right)=24\)
\(\Leftrightarrow\left(x^2+x\right)\left(x^2-x+2x-2\right)=24\)
\(\Leftrightarrow\left(x^2+x\right)\left(x^2+x-2\right)=24\)
\(\Leftrightarrow\left(x^2+x-1+1\right)\left(x^2+x-1-1\right)=24\)
\(\Leftrightarrow\left(x^2+x-1\right)^2-1=24\)
\(\Leftrightarrow\left(x^2+x-1\right)^2=25\)
<=> 2 trường hợp sảy ra là bằng 5 hoặc -5 nhé
\(\left(x-1\right)^2-1+x^2=\left(1-x\right)\left(x+3\right)\)
\(\Leftrightarrow\left(x-1\right)^2+\left(x-1\right)\left(x+1\right)=\left(1-x\right)\left(x+3\right)\)
\(\Leftrightarrow2x\left(x-1\right)=\left(1-x\right)\left(x+3\right)\)
\(\Leftrightarrow2x\left(x-1\right)+\left(x-1\right)\left(x+3\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(3x+3\right)=0\)
\(\Rightarrow x=\pm1\)
Giúp tớ mấy câu còn lại đi các cậu, tớ cần gấp lắm ạ ;;-;;
a) đặt \(\left(x^2+x\right)\)là \(y\)
ta có: \(3y^2-7y+4\)\(=0\)
<=>\(\left(3y-4\right)\left(y-1\right)=0\)
còn lại bạn tự xử nhé
Ta có :
\(\left(x-1\right)\left(x-12\right)=2\left(x-2\right)\left(x-3\right)\)
\(\Leftrightarrow x^2-13x+12=2\left(x^2-5x+6\right)\)
\(\Leftrightarrow x^2-13x+12=2x^2-10x+12\)
\(\Leftrightarrow x^2+2x=0\)
\(\Leftrightarrow x\left(x+2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x+2=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=-2\end{cases}}\)
Vậy : \(x\in\left\{0,-2\right\}\)
Nhị thức có nghiệm lần lượt là
-1 ; 1 ; 0 ; 2
\(x< -1\)
\(-1\le x< 0\)
\(0\le x< 1\)
\(1\le x< 2\)
\(x\ge2\)
Xét \(x< -1\) ta có
\(\left|x+1\right|=-\left(x+1\right)\)
\(\left|x-1\right|=-\left(x-1\right)\)
\(\left|x\right|=-x\)
\(\left|x-2\right|=-\left(x-2\right)\)
Ta có pt
\(-\left(x+1\right)-3\left(x-1\right)=x+2-x-2\left(x-2\right)\)
\(\Leftrightarrow x=-2\)
Xét \(-1\le x< 0\)ta có pt
\(\left(x+1\right)-3\left(x-1\right)=x+2-x-2\left(x-2\right)\)
\(\Leftrightarrow0x=2\) ( pt vô nghiệm)
Xét \(0\le x< 1\)ta có pt
\(x+1-3\left(x-1\right)=x+2+x-2\left(x-2\right)\)
\(\Leftrightarrow x=-1\)(loại)
Xét \(1\le x< 2\) ta có pt
\(x+1+3\left(x+1\right)=x+2+x-2\left(x-2\right)\)
\(\Leftrightarrow x=2\) (loại)
Xét \(x\ge2\) ta có pt
\(x+1+3\left(x-1\right)=x+2+x+2\left(x-2\right)\)
\(\Leftrightarrow0x=0\)
Vậy \(\orbr{\begin{cases}x=2\\x\ge2\end{cases}}\)....