Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left|3x^2-7x+2\right|=-x^2+5x-6\)
\(\Leftrightarrow\left[{}\begin{matrix}3x^2-7x+2=-x^2+5x-6\\-\left(3x^2-7x+2\right)=-x^2+5x-6\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\left(x-2\right)\left(x-1\right)=0\\\left(x-2\right)\left(x+1\right)=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=1\\x=-1\\x=2\end{matrix}\right.\)
vậy....
1.a)|−7x|=3x+16
Vì |-7x| ≥ 0 nên 3x+16 ≥ 0 ⇔ x ≥ \(\dfrac{-16}{3}\) (*)
Với đk (*), ta có: |-7x|=3x+16
\(\left[\begin{array}{} -7x=3x+16\\ -7x=-3x-16 \end{array} \right.\) ⇔ \(\left[\begin{array}{} -7x-3x=16\\ -7x+3x=-16 \end{array} \right.\)
⇔ \(\left[\begin{array}{} x=-1,6 (t/m)\\ x= 4 (t/m) \end{array} \right.\)
b) \(\dfrac{x-1}{x+2}\) - \(\dfrac{x}{x-2}\) = \(\dfrac{5x-8}{x^2-4}\)
⇔ \(\dfrac{(x-1)(x-2)}{x^2-4}\) - \(\dfrac{x(x+2)}{x^2-4}\) = \(\dfrac{5x-8}{x^2-4}\)
⇒ x2 - 2x - x + 2 - x2 - 2x = 5x - 8
⇔ -5x - 5x = -8 - 2
⇔ -10x = -10
⇔ x=1
2.7x+5 < 3x−11
⇔ 7x - 3x < -11 - 5
⇔ 4x < -16
⇔ x < -4
bạn tự biểu diễn trên trục số nha !
`(2x)/(3x^2-x+2)-(7x)/(3x^2+5x+2)=1(x ne -1,-2/3)`
Đặt `a=3x^2+2x+2(a>=5/3)`
`pt<=>(2x)/(a-3x)-(7x)/(a+3x)=1`
`=>2x(a+3x)-7x(a-3x)=a^2-9x^2`
`<=>2ax+6x^2-7ax+21x^2=a^2-9x^2`
`<=>-5ax+27x^2=a^2-9x^2`
`<=>a^2-36x^2+5ax=0`
`<=>a^2-4ax+9ax-36x^2=0`
`<=>a(a-4x)+9x(a-4x)=0`
`<=>(a-4x)(a+9x)=0`
`+)a=4x`
`=>3x^2+2x+2=4x`
`=>3x^2-2x+2=0`
`=>x^2-2/3x+2/3=0`
`=>(x-1/3)^2+5/9=0` vô lý
`+)a+9x=0`
`=>3x^2+2x+2+9x=0`
`=>3x^2+11x+2=0`
`=>x^2+11/3x+2/3=0`
`=>x=(-11+-\sqrt{97})/6`
ĐKXĐ: \(x\ne-1;x\ne-\dfrac{2}{3}\)
Ta có: \(\dfrac{2x}{3x^2-x+2}-\dfrac{7x}{3x^2+5x+2}=1\)(1)
\(\Leftrightarrow\dfrac{2}{3x-1+\dfrac{2}{x}}-\dfrac{7}{3x+5+\dfrac{2}{x}}=1\)
Đặt: \(3x+\dfrac{2}{x}=a\) (x khác 0) thì pt(1) trở thành:
\(\dfrac{2}{a-1}-\dfrac{7}{a+5}=1\)
\(\Leftrightarrow\dfrac{2\left(a+5\right)-7\left(a-1\right)}{\left(a-1\right)\left(a+5\right)}=1\)
\(\Leftrightarrow2\left(a+5\right)-7\left(a-1\right)=\left(a-1\right)\left(a+5\right)\)
\(\Leftrightarrow-5a+17=a^2+4a-5\)
\(\Leftrightarrow a^2+4a+5-5-17=0\)
\(\Leftrightarrow a^2+9a-22=0\)
\(\Leftrightarrow\left(a-2\right)\left(a+11\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}a=2\\a=-11\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}3x+\dfrac{2}{x}=2\\3x+\dfrac{2}{x}=-11\end{matrix}\right.\)
Vì \(\left\{{}\begin{matrix}3x^2+2-2x\ne0\\3x^2+11x+2\ne0\end{matrix}\right.\)
=> PT vô nghiệm
Ủa hình như sai:vvv
a) \(ĐKXĐ:\)\(x\ne1;\)\(x\ne2;\)\(x\ne3.\)
\(\frac{6}{x^2-3x+2}+\frac{4}{x^2-4x+3}=\frac{2}{x^2-5x+6}\)
\(\Leftrightarrow\)\(\frac{6}{\left(x-1\right)\left(x-2\right)}+\frac{4}{\left(x-1\right)\left(x-3\right)}=\frac{2}{\left(x-2\right)\left(x-3\right)}\)
\(\Leftrightarrow\)\(\frac{6\left(x-3\right)}{\left(x-1\right)\left(x-2\right)\left(x-3\right)}+\frac{4\left(x-2\right)}{\left(x-1\right)\left(x-2\right)\left(x-3\right)}=\frac{2\left(x-1\right)}{\left(x-1\right)\left(x-2\right)\left(x-3\right)}\)
\(\Rightarrow\)\(6\left(x-3\right)+4\left(x-2\right)=2\left(x-1\right)\)
\(\Leftrightarrow\)\(6x-18+4x-8=2x-2\)
\(\Leftrightarrow\)\(8x=24\)
\(\Leftrightarrow\)\(x=3\) (ko thỏa mãn ĐKXĐ)
Vậy pt vô nghiệm
Bài `1:`
`h)(3/4x-1)(5/3x+2)=0`
`=>[(3/4x-1=0),(5/3x+2=0):}=>[(x=4/3),(x=-6/5):}`
______________
Bài `2:`
`b)3x-15=2x(x-5)`
`<=>3(x-5)-2x(x-5)=0`
`<=>(x-5)(3-2x)=0<=>[(x=5),(x=3/2):}`
`d)x(x+6)-7x-42=0`
`<=>x(x+6)-7(x+6)=0`
`<=>(x+6)(x-7)=0<=>[(x=-6),(x=7):}`
`f)x^3-2x^2-(x-2)=0`
`<=>x^2(x-2)-(x-2)=0`
`<=>(x-2)(x^2-1)=0<=>[(x=2),(x^2=1<=>x=+-2):}`
`h)(3x-1)(6x+1)=(x+7)(3x-1)`
`<=>18x^2+3x-6x-1=3x^2-x+21x-7`
`<=>15x^2-23x+6=0<=>15x^2-5x-18x+6=0`
`<=>(3x-1)(5x-1)=0<=>[(x=1/3),(x=1/5):}`
`j)(2x-5)^2-(x+2)^2=0`
`<=>(2x-5-x-2)(2x-5+x+2)=0`
`<=>(x-7)(3x-3)=0<=>[(x=7),(x=1):}`
`w)x^2-x-12=0`
`<=>x^2-4x+3x-12=0`
`<=>(x-4)(x+3)=0<=>[(x=4),(x=-3):}`
`m)(1-x)(5x+3)=(3x-7)(x-1)`
`<=>(1-x)(5x+3)+(1-x)(3x-7)=0`
`<=>(1-x)(5x+3+3x-7)=0`
`<=>(1-x)(8x-4)=0<=>[(x=1),(x=1/2):}`
`p)(2x-1)^2-4=0`
`<=>(2x-1-2)(2x-1+2)=0`
`<=>(2x-3)(2x+1)=0<=>[(x=3/2),(x=-1/2):}`
`r)(2x-1)^2=49`
`<=>(2x-1-7)(2x-1+7)=0`
`<=>(2x-8)(2x+6)=0<=>[(x=4),(x=-3):}`
`t)(5x-3)^2-(4x-7)^2=0`
`<=>(5x-3-4x+7)(5x-3+4x-7)=0`
`<=>(x+4)(9x-10)=0<=>[(x=-4),(x=10/9):}`
`u)x^2-10x+16=0`
`<=>x^2-8x-2x+16=0`
`<=>(x-2)(x-8)=0<=>[(x=2),(x=8):}`
a) 7x - 35 = 0
<=> 7x = 0 + 35
<=> 7x = 35
<=> x = 5
b) 4x - x - 18 = 0
<=> 3x - 18 = 0
<=> 3x = 0 + 18
<=> 3x = 18
<=> x = 5
c) x - 6 = 8 - x
<=> x - 6 + x = 8
<=> 2x - 6 = 8
<=> 2x = 8 + 6
<=> 2x = 14
<=> x = 7
d) 48 - 5x = 39 - 2x
<=> 48 - 5x + 2x = 39
<=> 48 - 3x = 39
<=> -3x = 39 - 48
<=> -3x = -9
<=> x = 3
|3x^2-7x+2|=-x^2+5x-6
có x=2